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The wave property of phonons is employed to explore the thermal transport across a finite periodic

array of nano-scatterers such as circular and triangular holes. As thermal phonons are generated in

all directions, we study their transmission through a single array for both normal and oblique inci-

dences, using a linear dispersionless time-dependent acoustic frame in a two-dimensional system.

Roughness effects can be directly considered within the computations without relying on approxi-

mate analytical formulae. Analysis by spatio-temporal Fourier transform allows us to observe the

diffraction effects and the conversion of polarization. Frequency-dependent energy transmission

coefficients are computed for symmetric and asymmetric objects that are both subject to reciproc-

ity. We demonstrate that the phononic array acts as an efficient thermal barrier by applying the the-

ory of thermal boundary (Kapitza) resistances to arrays of smooth scattering holes in silicon for an

exemplifying periodicity of 10 nm in the 5–100 K temperature range. It is observed that the associ-

ated thermal conductance has the same temperature dependence as that without phononic filtering.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4959803]

I. INTRODUCTION

Characterizing heat flow at interfaces,1,2 where thermal

boundary resistances (TBR, also called Kapitza resistances)

can impede the heat transfer, is of critical importance at the

sub-micron length scales due to the high surface-to-volume

ratio. Adding carbon nanotubes to the metal/metal interface3,4

or including self-assembled nanoparticles embedded in the

material5,6 are some experimental examples that can be used

to tune the TBR, as well as chemical etching.7–9 Other strate-

gies have been highlighted, such as the addition of a new

material to the solid/solid coupling or modulating the rough-

ness.10 Lattice dynamics,11,12 Green’s functions,13 and molec-

ular dynamics are often employed for the calculations.14–16

We observe that the two commonly applied models, the

acoustic mismatch model (AMM) and the diffuse mismatch

model (DMM), do not necessarily lead to values that are com-

parable to the available experimental data.1,15,17,18 In all cases,

it is clear that the shapes of embedded elements and/or interfa-

ces have an important impact on the TBR.5,6,10,19,20

Phonon coherence effects may provide a new way to con-

trol heat transfer properties at boundaries. Such effects linked

to the wave nature of the phonons have recently been experi-

mentally evidenced by the Chen group21 and the California

group,22 showing in particular, that peculiar effects may take

place for nanometer sizes at low temperatures and up to tem-

peratures close to ambient. In addition, phononic configura-

tions, which involve periodic arrays of holes23–25 or

embedded particles,26 have shown a strong reduction of the

effective thermal conductivity. It is debated if the reason is

due to coherence in these particular experimental works or

due to the involved sizes which appear larger than the thermal

wavelengths, but many interesting proposals have been

highlighted, from the GHz to the THz27,28 range where peri-

odicity is expected to play a key role for heat transport.23,29

Most of the theoretical suggestions deal with crystals

involving many periods and derive an effective thermal con-

ductivity based on the infinite-crystal approach. Since bound-

aries can already decrease strongly the heat transfer, it may be

possible to block the heat transfer with smaller structures.

Here, we study the transmission and the thermal resis-

tance of a finite phononic structure consisting of a single

array of periodic holes, by solving the elastic wave equation.

The acoustic frame is particularly suitable to reproduce the

low-temperature phonon behaviors30 and may help to disen-

tangle the elastic and inelastic contributions to thermal resis-

tances.31 Various hole shapes are considered such as disks,

equilateral, and isosceles triangles. We note that roughness

can be directly included in the model by designing associated

shapes. In contrast to previous works that analyzed phonon

transmission through such single array with the goal of

highlighting non-symmetrical acoustic transmission (some-

times improperly called “acoustic rectification”32), we ana-

lyze the acoustic transmission not only for the normal

incidence but also for oblique cases. This is required because

thermal phonons are generated randomly in all directions. It

allows observing reciprocity also for the case of asymmetric

phononic structures. We perform an analysis of the displace-

ment fields in order to determine if phonons of particular

wavelengths and direction of propagation are especially fil-

tered by the single array. Finally, we calculate the thermal

conductances of the phononic array with the help of a

Landauer-based approach which is similar to the AMM the-

ory of thermal boundary resistance, both at equilibrium and

out of equilibrium. A 10 nm-periodicity is considered for this

example in two dimensions, showing that the structure

indeed blocks a large portion of heat depending on the geo-

metrical parameters associated to the considered shapes.

The article is organized as follows: In Sec. II, we describe

(i) the structure, (ii) how we simulate phonon propagation

with the elastic wave equation, (iii) the implementation and
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the computational domain, and (iv) present briefly the deriva-

tion of the thermal conductance based on the frequency-

dependent transmission coefficients. In Sec. III, we (i) analyze

the results of the spatial filtering resulting in diffraction effects

and (ii) compute the transmission coefficients and the thermal

conductance in the presence of the hole array. Finally, we pre-

sent a summary and the consequences of this work in Sec. IV.

II. METHOD

A. Simulated structure and computational domain

The illustration of one simulated structure in two dimen-

sions (2D) is shown in Figure 1. The periodicity in the y-

direction is a and we simulate often more than one period, as

will be explained in Sec. II C. Empty holes with specific

shapes are located in the middle of the simulated domain.

Periodic boundary conditions are applied at the bottom and

the top of structure. Two absorbing layers are created to

avoid the reflection at left and right of the system.33–35 The

size of these layers is large enough to ensure that the fluxes

at the end walls of the system are null. We recall the

approach that we use to derive the elastic equation in the

absorbing domain in Appendix A.

Acoustic waves are generated by the source at the left

end of the lossless computational domain (left red line) and

detected at its right end (right red line), and vice versa. The

comparison between the propagation from left to right and

right to left is particularly useful for the analysis of asym-

metric objects. The distances between the single array and

the source/detector are equal to Lsource¼ 10k, where k is the

wavelength. The mesh is chosen so that both Dx and Dy are

always smaller than k/5. The wavelengths can be compared

to the periodicity by introducing a non-dimensioned positive

number Nk¼ a/k. Hence, the circular frequency is also

related to the medium velocity v and the periodicity a

x ¼ 2pv

a
Nk; (1)

where v is the velocity for the considered polarization. Three

shapes of holes are analyzed in this study: (a) circular, (b)

equilateral triangle, and (c) right isosceles triangle. To com-

pare the area of these holes, we introduce a “filling factor” F
defined by the ratio between the hole area and the a-side

square area

F ¼ Shole

Ssquare
: (2)

This can be seen as the filling factor of the correspond-

ing phononic crystal (of 2D periodicity). In addition, we

consider what we will call the “blocking ratio” defined as the

ratio of the projected length l to the periodicity a

R ¼ l

a
: (3)

Fig. 2 presents three hole shapes with the same filling

factor F¼ 0.2, with blocking ratios which are different. The

values of the blocking ratios increase with the following

order: disk, equilateral triangle, and then isosceles triangle.

B. Phonons as elastic waves

As phonons are propagative acoustic waves, we solve

the linear elastic equation in two dimensions (2D) to com-

pute the phonon transmission experiment through an array

q ~rð Þ @
2~u ~r; tð Þ
@t2

¼ rT ~r ; tð Þ; (4)

where q is the mass density, ~u is displacement field, and T is

the stress tensor. The stress tensor relates to the elastic constant

Cijkl by Tij ~r; tð Þ ¼ 1
2

Cijkl ~rð Þ @uk ~r ;tð Þ
@xl
þ @ul ~r ;tð Þ

@xk

� �
. In the follow-

ing, we use the usual abbreviated subscripts for elastic con-

stants36 and require only three constants C11, C44, and C12 for

the cubic crystal case. To simplify, the material is assumed iso-

tropic, so that C12¼C11 � 2C44. For silicon, q¼ 2331 kg m�3,

C11¼ 16.57� 1010 N m�2, and C44¼ 7.956� 1010 N m�2.36

The longitudinal velocity vl and the transverse one vt

are defined by the materials properties: vl ¼
ffiffiffiffiffiffiffiffiffiffi
C11=q

q
and

vt ¼
ffiffiffiffiffiffiffiffiffiffi
C44=q

q
.

We solve numerically Eq. (1) with the finite element

method.37 We obtain the time evolution of the displacement

field uð~r; tÞ and the stress tensor Tijð~r; tÞ at each point in the

system. This allows computing the acoustic Poynting vector
~Pð~r; tÞ that carries the energy flux

~P ~r; tð Þ ¼ �~v
� ~r; tð ÞT̂ ~r; tð Þ

2
; (5)

FIG. 1. Illustration of a simulated

structure involving two rows with tri-

angular shapes. Absorbing conditions

are applied in the two blue regions (see

more in the Appendixes); phonon

source and detector are highlighted

with the red lines.

FIG. 2. Three different hole shapes studied in this work: disk, equilateral tri-

angle, and right isosceles triangle, respectively, from left to right. The peri-

odicity is a, and the filling factor F¼ 0.2 is identical for these three cases.
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where ~v is the velocity calculated by derivation of the dis-

placement field d~u=dt. In the following, we consider a bi-

dimensional system, and the Poynting vector is reduced to a

vector with two components. The projection of the flux on

the x-direction allows monitoring the energy propagation

across the array

Px ¼
X
i¼l; t

�
v�x ~r; tð ÞTxx ~r; tð Þ þ v�y ~r; tð ÞTyy ~r; tð Þ

2
: (6)

We note that this method can be used to study phonon trans-

mission for many types of structures, such as boundaries

between two dissimilar solids in direct contact (see

Appendix B). It may provide a mesoscopic alternative to

atomistic techniques such as molecular dynamics, especially

at low temperatures where the latter does not behave well.

Note that it could also be extended to nonlinear media.

C. Condition linking oblique waves and the simulated
domain

As mentioned in Sec. I, a thermal source emits phonons

to its surrounding environment in all directions. Hence, to

calculate the heat flux generated and transmitted through a

structure, all directions have to be included. We excite not

only the normal acoustic waves that are perpendicular to the

periodic direction but also oblique waves (see Fig. 3). As

longitudinal and transverse wave propagations can be sepa-

rated36 (see more in Sec. III A), we show here how to simu-

late the longitudinal waves.

The acoustic wave displacement is expressed as

~u ¼ ~u0eiðxt�~k~rÞ ¼ ~u0eiðxt�kxx�kyyÞ; (7)

where ~k is the wave vector, kx and ky are the projection of ~k
on the x and y axis, respectively, and ~u0 is perpendicular or

parallel to ~k, depending on the polarization. From Eq. (7),

the acoustic source located in~r0 writes ~uð~r0Þ ¼ ~u0eiðxt�~k :~r0Þ .

The periodic condition in the y-direction requires that at one

given position x0, the displacement field at the top and the

bottom are the same. Fig. 3(b) shows two typical points y1

and y2 at the boundaries and illustrates the condition on the

incident angle h ¼ ð~u; ~xÞ and the number of simulated rows

Nrows. The condition is written as

u y1 ¼
aNrows

2
; x0

� �
¼ u y2 ¼ �

aNrows

2
; x0

� �
: (8)

Taking Eq. (8) into account, we have

u0 exp i xt� k sin h
aNrows

2
� k cos hx0

� �� �

¼ u0 exp i xtþ k sin h
aNrows

2
� k cos hx0

� �� �
: (9)

The above equation leads easily to the relation

sin h ¼ 2pv

xaNrows
n; (10)

where n is an integer that allows to satisfy 0 � sin h � 1. By

taking Eq. (1) into account, we obtain the final condition

sin h ¼ n

NkNrows
: (11)

As we consider angles h from 0 to p/2, n takes values

between 0 and NkNrows. Consequently, for a given frequency

(Nk) and a given number of simulated rows Nrows, we can sim-

ulate certain waves with incident angles satisfying the condi-

tion defined in Eq. (11).

Fig. 4 illustrates the propagation of the waves by pre-

senting a snapshot of the ux component of the displacement

field for two incident angles in the case Nk¼ 2.5 (as an

example, for a¼ 10 nm, k¼ a/2.5¼ 4 nm): (a) normal inci-

dent angle (h¼ 0), and (b) oblique incident angle with

sinh¼ 0.4. In this example, the stationary regime has not

been reached. The scattering objects separate the displace-

ment field into two regions: a first one at left where incident

and reflected waves are observed; a second one at right that

contains the fields associated to the transmitted waves, where

the propagation has been obviously modified. In addition,

the interference between incident and reflected waves is

observed in the first region. We note in particular, that a uy

component is generated immediately after the objects even

though only the ux component is excited in the normal inci-

dent case (not shown here). This is due to the fact that the

propagation direction is changed and is not anymore only in

the normal incidence for longitudinal waves; the projection

of the displacement field on the y-axis is non-null.

Animations related to normal and oblique incidence of pho-

nons on the single array during 313 waveperiods can be

found in Ref. 38.

As waves travel through a grating-like periodic structure,

they can be diffracted according to Bragg’s law expressed as

a sin hn ¼ nk; (12)
FIG. 3. (a) Illustration of waves impinging the scatterer from different inci-

dent angles. (b) Periodic condition for the oblique incidence.
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where n is an integer which corresponds to the diffraction

order characterized by the angle hn (see also Appendix C).

Considering the wave shown in Fig. 4 with Nk¼ 2.5, the dif-

fraction angles are h1¼ 1/2.5¼ 23.6� and h2¼ 2/2.5¼ 53.1�.
In the following, the magnitude of these waves will be deter-

mined by the spatio-temporal Fourier transform (FT).

D. Equilibrium thermal conductance in 2D and
frequency-dependent transmission coefficients

The TBR (Kapitza resistance) measures the boundary

resistance to the propagation of the thermal flux. The theory

has been applied to predict the thermal resistance of different

types of junction.15,16,39,40 Here, we consider the hole array as

a barrier between two parts of the same material. In the fol-

lowing, we recall how to apply the formula for the 2D case.

The thermal conductance G between two media is defined as

G ¼ q

T2 � T1

; (13)

where q is the heat flux across the junction, and Ti is the tem-

peratures at the lead i. The heat flux across the structure

relates to the transmitted phonons. At steady-state, the net

heat flux in 2D is

q ¼
ðþ

~k

�hxv1x x; ~k
	 


t12 x; ~k
	 


f ~k; T1

	 
 d2~k

2pð Þ2

þ
ð�

~k

�hxv2x x; ~k
	 


t21 x; ~k
	 


f ~k; T2

	 
 d2~k

2pð Þ2
; (14)

where �h is the reduced Plank constant, vix denotes the phonon

velocity in medium i projected along the direction x normal to

the array, f ð~k; TiÞ is the phonon distribution function at the

medium temperature Ti, and tijðx; ~kÞ is the wave-vector depen-

dent transmission coefficient from the medium i to the medium

j. The signs þ and – indicate that the integrals deal with kx> 0

and kx< 0, respectively. When the thermal transport is close to

the equilibrium state, the phonon distribution can be assimi-

lated to the equilibrium Bose-Einstein distribution fBE(x,T)

that does not anymore depend on the direction. In a lossless

medium, by invoking the balance principle when the heat flux

is zero at thermal equilibrium,15 Eq. (14) can be simplified to

q ¼
ðþ

~k

�hxvx x; ~k
	 


t12 x; ~k
	 


fBE x; T2ð Þ � fBE x; T1ð Þ½ � d2~k

2pð Þ2
:

(15)

We now restrict ourselves to a 2D configuration. h is the

angle between ~k and the x axis, therefore, vx¼ v cosh. The 2D

thermal conductance at equilibrium G ¼ dq
dT associated to one

polarization state is finally calculated as

Geq ¼
1

2pð Þ2
ð
x

ðh¼p
2

h¼�p
2

�hx3

v2

dfBE x; Tð Þ
dT

t12 x; hð Þcos hdhdx :

(16)

We introduce the frequency-dependent transmission coef-

ficient s12(x) as the transmission coefficient including all

wavevector directions

s12ðxÞ ¼
ðh¼p=2

h¼0

t12ðx; hÞ cos h dh; (17)

so that the 2D thermal conductance writes

Geq ¼
1

2p2

ð
x

�hx3

v2

dfBE x; Tð Þ
dT

s12 xð Þ dx: (18)

For a given polarization state, the maximal monochro-

matic thermal conductance gmax (x) is achieved for s12 ¼ 1.

The expression of Eq. (16) is established at equilibrium. Out

of equilibrium, a discontinuity of temperature occurs, which

can be accounted for by using the local distribution f ð~rÞ,39

which obeys the Boltzmann transport equation (BTE) with

f ð~rÞ ¼ fBEðTð~rÞÞ þ df ð~rÞ: (19)

Including the deviation of the distribution function f in

the relaxation time approximation of the BTE, the non-

equilibrium thermal conductance can finally be written as39

Gneq ¼
Geq

1� b12 � b21

; (20)

involving the quantity

b12 ¼
ðþ

~k

sscatt1v2
1x�hx

@feq

@T
t12d~k=j1; (21)

where sscatt,1 is the relaxation time and j1 is the thermal con-

ductivity in material 1. b21 has a similar definition. To be con-

sistent with the 2D conduction, these fractions are also

calculated in 2D. By plugging the AMM expression into Eq.

(21), the conductance Gneq of this model has been shown to

compare well with molecular dynamics simulations.39 We note

that while phonons have been mainly considered as waves up

FIG. 4. ux displacement field close to a single array of equilateral triangular

holes (normalized): (a) wave in normal incidence, and (b) wave in normal

incidence with sinh¼ 0.4. Two regions are defined: the one with incident

and reflected (IR) waves, and the one with transmitted (T) waves.
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to Eq. (18), we here rely on a modification based on the quasi-

particle frame. This is possible if the mean free path of the

waves is much larger than the characteristic sizes associated to

our finite structure such as a.

E. Numerical implementation

The simulation allows us to compute the average flux

density at a given position x0 including the contributions of

all waves

Px x0ð Þ ¼
1

ymax � ymin

ðymax

ymin

Px x0; yð Þ dy; (22)

with ymax–ymin being a multiple of a, and Px(x0,y) is defined

in Eq. (5). The frequency-dependent transmission coefficient

can be calculated as the ratio between the sum of transmitted

heat flux intensities and the sum of the incident heat flux

intensities �P0

s xð Þ ¼

ð
hi

ð
ht

�Pt x; hi; htð Þcos htdht

2
4

3
5dhi

ð
hi

�P0 xð Þcos hidhi

; (23)

where �P0ðx; hiÞ and �Ptðx; hi; htÞ are the average flux densi-

ties, respectively, of the incident wave (identical for all inci-

dent angles hi) and of the transmitted wave in a given angle

ht for an incident angle hi. Numerically, we extract
�Pt;xðx; hiÞ ¼

Ð
ht

�Pt;xðx; hi; htÞ cos htdht, where the index x
stands for the projection on the x axis. The frequency-

dependent coefficient is computed by discretizing Eq. (23)

s xð Þ �
P

hi
�Pt;x x; hið ÞDhi

�P0 xð Þ
: (24)

III. RESULTS

A. Diffraction effect—Spatial filtering

We now turn to the analysis of the transmission and scatter-

ing of each incident wave (x, k) by the finite structure. To ana-

lyze the transmission and reflection processes, we use the spatio-

temporal Fourier Transform (FT).41 It has been used to investi-

gate the dispersion relation of surface acoustic modes,42 acoustic

band structure43 and to observe the diffraction angles.44 In infi-

nite space and time domains, the FT is written as

Uð~k;xÞ ¼
ð1

�1

ð1

�1

uð~r; tÞeiðxt�~k~rÞd~rdt: (25)

By limiting to a given spatial domain and integrating

over one period Tx¼ 2p/x, the spatio-temporal FT becomes

U ~k;x
	 


¼ 1

lx

1

ly

1

Tx

ðt1þTx

t1

ðx0þlx=2

x0�lx=2

ðy0þly=2

y0�ly=2

u x; y; tð Þ

� ei xt�kxx�kyyð Þdx dy dt; (26)

[x0 � lx/2, x0þ lx/2] and [y0 � ly/2, y0þ ly/2] are the bounds

of the analyzed domain in x and y directions. We consider a

time t1 for which the stationary regime is already established,

ly proportional to a, x0 at left or right of the scattering ele-

ments with lx such that the addressed area is in the far field

of the scattering elements. Both ux and uy components are

analyzed with FT. In order to examine the conversion of

polarization, we combine these two components to determine

the relative contributions of the longitudinal and the trans-

verse modes. The longitudinal and transverse amplitudes are

obviously calculated with

ul ¼ ux cos hþ uy sin h
ut ¼ �ux sin hþ uy cos h

;

�
(27)

where h is the angle between x-axis and the wavevector ~k.

Fig. 5 shows the maps of spatio-temporal FT of the dis-

placement field in reciprocal space with Nk¼ 2.5, i.e., k¼ a/

2.5. The independent propagation of longitudinal ul and

transverse ut modes are shown for two cases: (a)–(b)–(e)–(f)

circular holes, (c)–(d)–(g)–(h) triangular holes. The two dot-

ted circles represent the iso-wavevector curves for longitudi-

nal waves (kl¼x/vl) and for transverse waves (kt¼x/vt). As

the longitudinal velocity vl is larger than the transverse one

vt, the inner circle corresponds to kl and the outer one corre-

sponds to kt. In this figure, the wave vectors are normalized

by the maximal longitudinal one.

In Figs. 5(a) and 5(c), the incident waves in normal inci-

dence (h¼ 0) are represented by the points on the longitudinal

circle, with kx> 0 and ky¼ 0; this shows the propagation in

the positive direction. On the same circle, the points of nega-

tive kx represent the diffracted waves: the centered point is

associated to the reflected wave (order 0), the next two sym-

metric points, which have ky/k¼ 1/2.5¼ 0.4, are associated to

the first order of diffraction, while the two outer points with

ky/k¼ 2/2.5¼ 0.8 are associated to the second order of diffrac-

tion. These ratios are exactly the sine values of diffracted

angles h1 and h2, as predicted by Bragg’s law.

In addition, diffracted waves are also represented on the

transverse circle. This shows the effect of conversion of polari-

zation due to the arrays. In the transmitted region, diffracted

waves that travel through the single array are represented with

kx> 0 in Figs. 5(b) and 5(d). According to Snell’s law, these

transverse waves have the same ky component as the longitudi-

nal wave of identical diffraction order. For an oblique wave

with incidence such that sinh¼ 0.4, the incident waves in Figs.

5(e) and 5(g) are found on the iso-longitudinal wavevector cir-

cle according to ky/kl¼ 0.4. As a consequence, the zeroth-order

diffracted waves also have this ratio. In addition, higher orders

are shifted of nk/a on the ky-axis. The analysis in the two

regions remains similar to the normal incidence case. While

the amplitude of each diffracted wave depends on the hole

shape, the Bragg’s law and the Snell’s law apply for all struc-

tures. Diffraction plays an important role on the propagation

direction, leading to spatial filtering effect. Note that for long

wavelengths (k> a$ Nk< 1) the propagation direction of the

transmitted wave is the same as the one of the incident wave.

This section showed that the finite structure scatters

each incident wave towards selected directions; the
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procedure allows computing the weight of the amplitude of

each scattered waves. Section III B will consider the effect of

integration over direction and frequency.

B. Transmission coefficient and 2D thermal
conductance

1. Transmission coefficient s(x) through the periodic
array

We now sum up all the incident wave vectors at a given

frequency and observe the behavior of the frequency-

dependent transmission coefficients (Eqs. (17) and (27)).

First, we analyze the frequency-dependent transmission

coefficients as a function of the number of incident angles.

As the coefficient depends on cosine values, the large angles,

especially those near p/2, are less important than the small

ones. In our simulations, incident angles are characterized by

sine values in [0–0.89]. Fig. 6 shows the frequency-

dependent coefficients as a function of number of incident

angles for the case Nk¼ 3.0. In this example, the sine values

included are 0, 0.11, 0.25, 0.4, 0.53, 0.67, and 0.85. The con-

vergence of the coefficient value appears to be obtained for a

rather small number of angles. We have verified that increas-

ing this number up to 18 does not significantly improve the

calculations in our case. In the following, we calculate the

total transmission coefficients and the thermal conductance

with 7 angles for each frequency.

We observe in Fig. 6 (and Fig. 7(b)) that the frequency-

dependent transmission coefficients associated to heat fluxes

impinging the bases or the vertices of the asymmetric trian-

gles are equal when all propagation directions are included.

This is a manifestation of reciprocity, which is fulfilled in

our lossless and linear elastic system (see more in Ref. 32).

Indeed no rectification can be observed in the absence of

non-linear mechanism. This is different to the case of elastic

waves only excited and observed in normal incidence.44,45

We also note in Fig. 6 that the frequency-dependent

FIG. 5. Maps of spatio-temporal FT in reciprocal space (normalized as shown in Eq. (26)) for Nk¼ 2.5 in the case of circular holes (a), (b), (e), and (f) and in

the case of equilateral triangular holes (c), (d), (g), and (h): (a)-(c) incident region and (b)-(d) transmitted region for a wave in normal incidence (h¼ 0); (e)-(f)

incident region and (g)-(h) transmitted region for a wave in oblique incidence with sinh¼ 0.4. The dashed lines represent the iso-wavevector curves: the inner

circle for the longitudinal one, the outer circle for the transverse one. The orders of diffraction are also shown in the maps (0 for the zeroth order, 61 for the

first order, and 62 for the second order).

FIG. 6. Frequency-dependent transmission coefficient s(x) as a function of

the number of incident angles for Nk¼ 3.0 in two cases: (i) incidence toward

the triangle bases (solid lines) and (ii) toward the vertices (dashed lines),

both for a single array of equilateral triangles.
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transmission coefficients depend strongly on the filling factor

F: as an example, the lower the filling factor ratio, the larger

the transmission.

Fig. 7 shows the frequency-dependent transmission

coefficients as a function of the frequency x=(2p v/a)¼Nk

for (a) circular holes and (b) equilateral and right isosceles

triangular holes. For all the presented longitudinal cases, we

observe that the curves have the same trend. The transmis-

sion coefficients reach unity at low frequency and then

reduce to a certain value when increasing the frequency.

Two peaks at Nk¼ 1.5 and 3.5 are observed, while the non-

zero minimum values take place for Nk¼ 2.5. Note that

effects of geometrical resonances within the scatterers would

be possible if they were made of some material. In the cur-

rent work, the acoustic contrast is maximized by considering

scatterers made of vacuum, i.e., voids, and we do not study

such effect. The observed peaks could relate to acoustic Mie

scattering46 that can produce different angular distributions

of transmission and can probably influence the total trans-

mission. However, it is not clear currently if such feature

would stay after the angular integration. A comparison of

these results with the scattering cross-section of a single scat-

terer would be useful.

Here, it is observed that the values of the coefficients

remain quite close for each filling factor/blocking ratio for

frequencies larger than Nk¼ 0.5. As a result, we do not

observe sharp features in the spectrum. This may be due to

the “thermal” averaging due to the integration over all the

excited angles. For the circular holes of Fig. 7(a), the trans-

mission coefficients are around 65% for F¼ 0.1 (R¼ 0.36),

then around 55%–60% for F¼ 0.2 (R¼ 0.50), and finally

around 30% for F¼ 0.1 (R¼ 0.48). The same order is

obtained for equilateral triangular holes, the transmission

coefficients are the largest for F¼ 0.1 (R¼ 0.48), being close

to only 60%. This means that phonons are already efficiently

blocked and diffracted for a modest density of scatterers.

The values of the coefficients are around 40% for F¼ 0.2

(R¼ 0.68), then less than 10% for F¼ 0.4 (R¼ 0.96). The

same trend is observed for transverse waves (not shown

here). Comparing the total coefficients with F¼ 0.2, they are

different for each shape. The values of the frequency-

dependent transmission coefficients decrease with the fol-

lowing order: disk, equilateral, and right isosceles holes, in

agreement with the values of the associated blocking ratios.

Considering two cases with close values of R but different

values of F—(i) circular array with F¼ 0.2, R¼ 0.50, and

(ii) triangular array with F¼ 0.1, R¼ 0.48—we observe

close transmission coefficients through these arrays, around

60%. Despite the fact that wave scattering is often related to

the area associated to the scatterer, the blocking ratio may be

also a convenient way to describe the transmission.

Let us note that we have considered ideal shapes until

now, neglecting possible roughness on the walls of the holes.

In contrast to many other works, such roughness can be

accounted for by designing directly complex shapes without

relying on approximate analytical expressions. For example,

a roughness of D¼ 0.3 nm was introduced to the case

F¼ 0.2 studied in Fig. 7(a) by extruding half disks and graft-

ing them between the extruded area (see the inset of Fig.

7(a)). Note that such roughness is not random but identical

on each hole if no supercell is considered. A strong decrease

of the transmission can be observed, reaching 17%.

Roughness especially impacts the transmission coefficients

at high frequencies when short wavelengths become compa-

rable to the roughness characteristic size. In the following,

we restrict our study to smooth shapes.

2. Phononic thermal conductance

The single array of periodic holes acts as a thermal bar-

rier to which a thermal conductance can be associated. In

order to calculate the thermal conductance as described in

Section II D, we consider temperatures exciting thermal

wavelengths which are commensurate with the geometric

parameters of the array such as its periodicity. Here, a peri-

odicity a¼ 10 nm is chosen as an example. The frequency

dependence of the maximal monochromatic thermal conduc-

tance defined in Eq. (18) (Section II D) is considered. The

thermal frequencies associated to temperatures ranging from

5 K to 100 K are well located in the simulated frequency

band x = (2pv/a)¼ [0.025–4.5]. We have checked that the

summation of monochromatic thermal conductances gx,max

FIG. 7. Frequency-dependent transmission coefficients s(x) for arrays of (a)

circular holes and (b) equilateral and right isosceles triangular holes (plain

lines). In (a), the dashed line represents the results for rough circular holes.

The filling factor F and the blocking ratio R are shown for each curve.
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with our discretization fills over 90% of the values of the

integral for each temperature, as is customary for bosons

which possess broad spectra. Note that the time-domain sim-

ulations are computer intensive (few hours of CPU time on a

12-core processor with RAM 64 GB for one simulation) and

that the final computation requires summation over fre-

quency and angle.

The equilibrium thermal conductance Geq is shown in Fig.

8(a) for circular and triangular hole-based single arrays. The

2D conductance without the presence of hole G0 (Eq. (18) with

s12 ¼ 1) is also plotted for comparison The thermal conduc-

tance decreases when the filling factor increases, as the trans-

mission coefficients are reduced (see Eq. (18)). Moreover, for

the same filling factor the thermal conductance of the triangular

array is always smaller than that of the circular one. We remark

that the temperature dependence of the thermal conductance in

all cases is quadratic, i.e., Geq / T2: the modulation of the

Bose-Einstein factor by the transmission coefficients does not

lead to a different thermal behavior. The reduction of thermal

conduction in the presence of single arrays normalized to G0 is

plotted in Fig. 8(b). With F¼ 0.1, the relative conductance

reduces to 65%–62% for the two hole types, while the conduc-

tion drops to 30% and 10% with F¼ 0.4.

To obtain the non-equilibrium conductance (Eq. (20)),

we take into account phonon-phonon Umklapp scattering.

Our purpose is more to analyze how non-equilibrium affects

the values of the phononic thermal conductance than to prop-

erly account for phonon volume scattering. Slack and

Galginaitis47 suggested the following form for the Umklapp

process:

s�1
U ðxÞ ¼ BUx2Te�hD=3T ; (28)

where BU is a fitted parameter and hD is the Debye tempera-

ture. We consider the values of parameters calibrated to repro-

duce the experimental thermal conductivity of silicon in Ref.

48. They are hL¼ 586 K and BU
L¼ 5.5� 10�20 s�1 K�3.

The results are shown in Fig. 9 for the case of longitudi-

nal waves propagating through an array of triangular holes.

As the same material is present on the two sides of the array,

one can define only one fraction b¼b12¼ b21. Due to reduc-

tion of the transmission coefficient when widening the holes,

the same trend is obtained for b for temperatures from 5 K to

100 K. The non-equilibrium conductances are always higher

than the equilibrium ones for all cases (see Eq. (20)). The

shift of the non-equilibrium conductance with respect to the

equilibrium one increases with the transmission coefficient,

i.e., when reducing the element size. The main conclusions

at equilibrium stay valid.

IV. CONCLUSION

In summary, we have investigated the transmission of

heat though a finite periodic array of scatterers, here holes,

by solving the elastic wave equation in finite geometries.

The elastic waves, which model thermal phonons, have been

excited in various directions to model the thermal “emission”

by a heat source. By analyzing the spatio-temporal FT of the

displacement fields, we observed (i) that the periodicity fol-

lows Bragg’s law of diffraction, and (ii) that the conversion

of polarization takes place according to Snell’s law. The

amplitude of the transmission of each phonon mode varies as

a function of the scattering object shape, and we found that

there is a strong filtering effect even for modest size of the

elements, such as for an equivalent filling ratio F¼ 0.1. In

FIG. 8. (a) Equilibrium phononic thermal conductance as a function of tem-

perature in absence of hole array G0 (solid black line), in the presence of an

array with circular holes (solid lines with symbols) and with equilateral tri-

angular holes (dashed lines with symbols). (b) Ratio between the thermal

conductance in presence of the array and without it. Blue lines for filling fac-

tor F¼ 0.1, green lines for F¼ 0.2, and red lines for F¼ 0.4.

FIG. 9. Phononic thermal conductance as a function of temperature: in the

absence of hole array G0 (solid black line—equilibrium case for reference),

in the presence of a triangular array at equilibrium (dashed line with sym-

bols) and out of equilibrium (solid lines with symbols). Blue lines for filling

factor F¼ 0.1, green lines for F¼ 0.2, and red lines for F¼ 0.4.
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particular, we observed that rough scatterers lead to lower

transmission than smooth ones.

The frequency-dependent transmission coefficients of

three types of arrays were found to have similar trends when

varying the frequency. We noticed that the “blocking ratio”

appears useful to determine if phonons can be transmitted:

despite the different shapes, the frequency-dependent trans-

mission coefficients through objects of similar ratios are very

close. Furthermore, for triangular (asymmetric) objects, the

frequency-dependent coefficients associated to the heat flux

impinging (i) the bases and (ii) the vertices have the same

values. This is a consequence of reciprocity. We also

observed that there is no particular frequency at which sharp

spectral features such as a total gap could appear.

We highlighted that the single array acts as a thermal

barrier, in a way very-closely related to thermal (Kapitza)

boundary conductances. The phononic thermal conduction in

the 2D case was characterized for these structures for tem-

peratures ranging from 5 K to 100 K, in the example of iso-

tropic silicon. Due to the impact on the frequency-dependent

transmission coefficient, we observed that the hole size

strongly influences the thermal conductance. A reduction of

90% could be reached for a blocking ratio R¼ 0.71. We also

noticed that the presence of the array does not change the

temperature dependence of the equilibrium thermal conduc-

tance: it merely filters the whole spectrum once a certain fre-

quency is reached. We finally considered the impact of non-

equilibrium close to the array.

This work is an important step related to the study of the

wake-like phonon scattering properties through artificial inter-

faces, which are created by adding a periodic structure which

is finite in at least one dimension. It may provide a basis for

future investigations dealing also with non-linear mecha-

nisms49,50 expected to exhibit thermal rectification effects.
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APPENDIX A: WAVE EQUATION IN ABSORBING
REGION

We recall the derivation of the equation used for the

absorbing zones.35 In 1D, the elastic wave equation is written as

q
@2u

@t2
þrT ¼ 0: (A1)

This equation can be expressed in the following form:

q
@2u

@t2
þr �Cruð Þ ¼ 0: (A2)

In the absorbing zones, we introduce a new mass density

and new elastic constants while keeping the same acoustic

impedance Z ¼
ffiffiffiffiffiffi
qC
p

: qabs ¼ q
d, Cabs ¼ C 	 d. Then, we look

for a solution with a plane wave form ~u ¼ e�aj~r jeiðxt�~k~rÞ in

the absorbing regions. We can take

d xð Þ ¼ 1

rþ ix
: (A3)

By combining Eqs. (A2) and (A3), we obtain

qðr2 � x2Þuþ i 	 2qrxu�rð�CruÞ ¼ 0: (A4)

Finally, Eq. (A4) can be rewritten in the real space as

a third-order partial differential equation, or also as

follows:

q 1� r2

x2

� �
@2u

@t2
� 2qr

@u

@t
þrT ¼ 0: (A5)

This linear equation, which mixes frequency and time,

may appear as unusual, but it leads exactly to the same dis-

placement field as that of the third-order equation when a

plane wave is excited at x. It can be useful if one prefers

only to solve second-order partial differential equations in

the computational domain to avoid potential additional dis-

cretization requirements.

APPENDIX B: TRANSMISSION THROUGH A PERFECT
Si-Ge INTERFACE

In this section, we compute the transmission through

a perfect Si-Ge interface and compare the results with

those obtained semi-analytically within the acoustic-

mismatch model (AMM).51 This model captures the

impedance mismatch effect of phonon transmission. At the

interface, one part of wave is reflected and the other part

is refracted at the other side of the interface following

Snell’s law:

sin h1

v1

¼ sin h2

v2

: (B1)

Here, h1 and h2 are the incident and refraction angles,

respectively. It is required that the incident angle be smaller

than the critical angle hc¼ asin(v2/v1). We consider longitu-

dinal wave with velocity ratio vSi/vGe � 1.7. As a conse-

quence, the critical angle of waves propagating from Ge

towards Si is hc � 35�, while there is no angle limit in the

opposite direction.

Assuming that no inelastic scattering takes place at the

interface, the transmission coefficient t12 through a perfect

interface between two media 1 and 2 is given in the AMM

framework by

t12 x; h1ð Þ ¼ 4Z1Z2 cos h1 cos h2

Z1 cos h1 þ Z2 cos h2ð Þ2
with h1 � hc ;

t12 x; h1ð Þ ¼ 0 otherwise; (B2)

where Z1, Z2 are the acoustic impedances of medium 1 and

2, respectively.

Fig. 10 shows the transmission coefficients obtained for

Nk¼ 1.25 as a function of the angle of incidence for two

cases: waves propagating from Si to Ge (Fig. 10(a)), and

from Ge to Si (Fig. 10(b)). The coefficients calculated with

the AMM are also plotted, in solid lines. The results are in
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good agreement with the AMM prediction in the 0�–90�

range. This validates our method and allows us to study the

transmission through the periodic array.

APPENDIX C: PERIODIC CONDITIONS LEAD TO
DIFFRACTION

The periodic condition for wave propagation in the sim-

ulated domain, in particular, for the oblique ones, is

expressed in Eq. (11)

sin h ¼ n

NkNrows
: (C1)

1. Propagation through a perfect interface

According to Snell’s law, the refraction angle at the

interface between two different materials is defined from the

condition

sin h1

v1

¼ sin h2

v2

; (C2)

that can be rewritten

sin h2 ¼
v2

v1

sin h1: (C3)

As a consequence,

sin h2 ¼
v2

v1

	 n

NrowsNk;1

¼ v2

v1

	 n

Nrows
x

2pv1

a
¼ n

Nrows
x

2pv2

a

¼ n

NrowsNk;2

:
(C4)

This shows that the sine value of the refraction angle satisfies

the periodic condition in medium 2. This is due to the well-

known condition that the tangential component is conserved

when crossing an interface.

2. Propagation through a periodic array

The diffracted waves satisfy Bragg’s law as expressed in

Eq. (12)

a sin hm ¼ mk; (C5)

where m is an integer which corresponds to the diffraction

order characterized by the angle hm (0 � m � ½Nk�). By

replacing (1) in (12), we obtain

sin hm ¼ m
k
a
¼ m

2pv

x
a
¼ m

2pv

a
2pv

a
Nk

� � ¼ mNrows

NkNrows
: (C6)

The numerator of Eq. (C6) is obviously an integer. By

comparing Eqs. (11) and (C6), we verify that the diffracted

waves are satisfying the periodic conditions.
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