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We investigate the temperature and size dependencies of thermal emission by homogeneous

spheres as a function of their dielectric properties. Different power laws obtained in this work show

that the emitted power can depart strongly from the usual fourth power of temperature given by

Planck’s law and from the square or the cube of the radius. We also show how to optimize the

thermal emission by selecting permittivities leading to resonances, which allow for the so-called

super-Planckian regime. These results will be useful as spheres, i.e. the simplest finite objects, are

often considered as building blocks of more complex objects. Published by AIP Publishing.
https://doi.org/10.1063/1.5010426

Thermal emission by spheres is key to understanding the

radiative properties of more complex micro- and nanostruc-

tures. In scanning thermal microscopy and thermal-radiation

scanning tunnelling microscopy, the tip of the probe can

sometimes be approximated by a sphere.1–3 In Refs. 4 and 5,

spheres attached to tips were used for experimental investiga-

tions of near-field thermal radiation. Finally, incandescent

soot particles and also aerosols are often assumed to be made

of spherical emitters.6 Hence, spherical emitters are useful

tools to describe a wide variety of phenomena but are also

interesting in their own right. It has been predicted that

spheres can radiate more energy than what is expected for a

blackbody.7–9 This phenomenon was also observed for cylin-

ders10 and meta-materials.11,12 Until now, however, there has

been no thorough analysis on how the temperature and size

dependencies influence the emission properties of spheres.

Furthermore, no useful criteria have been proposed to achieve

super-Planckian emission (see Fig. 1) in usual materials. To

fill in this gap, we discuss size and temperature dependencies

of the radiative emission of dielectric and metallic spheres.

We show that the temperature dependence departs strongly

from the well-known fourth power associated with the Stefan-

Boltzmann law. We discriminate between the effects linked to

the particle size, explained by means of the Mie theory, and

those linked to the dielectric functions. In particular, we ana-

lyze the effect of the temperature-dependence of the dielectric

function. We also underline the fact that the emission is not

necessarily proportional to the surface nor to the volume of

the particle. In a second step, we investigate the super-

Planckian regime of homogeneous non-magnetic spheres as a

function of the size parameters and of the permittivities. The

results provide clear examples of the sizes at which the super-

Planckian regime starts and clues on the optimal thermal

power that can be extracted from an isolated compact object.

In order to quantify the heat emitted by a sphere, we

consider a model7,13 based on Mie theory14 and fluctuational

electrodynamics which gives a rigorous description of ther-

mal emission by homogeneous spheres of arbitrary radii.

The emitted thermal power is given by

Q ¼
ð1

0

dxHðx; TÞssðxÞ; (1)

where Hðx; TÞ ¼ �hx

e
�hx

kBT�1

is the mean energy of the Planck

oscillator at temperature T and

ss ¼
2

p

X
P¼E;M

X1
l¼1

ð2lþ 1Þ ReðT P
l Þ � jT P

l j
2

h i
: (2)

T P
l are the Mie coefficients for electric (E) and magnetic

(M) multipoles of order l.14 They are functions of the Mie

parameters X¼xR/c and Y¼ n(x, T)xR/c, where R is the

sphere radius, c is the speed of light in vacuum, and

nðx; TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðx; TÞ

p
is the relative refractive index of the

non-magnetic sphere, known to be linked to the dielectric

function (permittivity) �. Note that � depends on the fre-

quency and that the temperature dependence is often omitted

for the sake of simplicity. Equation (2) is proportional to the

absorption cross-section obtained in Mie theory by integrat-

ing the Poynting vector over a surface surrounding the

FIG. 1. Total effective emissivity eeff,tot ¼Q/(4pR2rT4) of spheres at T¼ 300 K

as a function of their radius for different materials: gold (blue circles), SiO2 (red

circles), and constant dielectric function �¼�2þ 0.0238i (green circles). The

horizontal lines are the results obtained with the macroscopic model for large

spheres, and the dots are the results obtained with the wave model. The inset

presents the relative errors between the macroscopic and the wave models. The

arrows indicate the regions for which emission is higher than the Planck limit.a)Electronic mail: khac-long.nguyen@insa-lyon.fr
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sphere as described in Refs. 13 and 14. The term in ReðT P
l Þ

originates from the extinction cross-section, while the one in

jT P
l j

2
stems from the scattering cross-section. The signs of

the Mie coefficients follow the definition of Ref. 14. The fact

that the absorption cross-section appears here to describe

emission is an expression of Lorentz reciprocity.

Figure 1 presents the total effective emissivity eeff,tot at

T¼ 300 K, defined as Q/(4pR2rT4), of spheres obtained with

the wave model (circles) with different material properties:

gold, SiO2, and constant permittivity �¼�2þ 0.0238i (grey

material). r ¼ p2k4
B=60c2�h3 is the Stefan-Boltzmann con-

stant. The emissivities are termed as effective in the follow-

ing because they are not necessarily surface quantities.

Similar curves have been shown by Kr€uger et al.13 Here, we

have used the asymptotic formula of Bessel functions of the

Mie coefficients to compute the total effective emissivity of

very large spheres. The horizontal lines are the results

obtained with the classical model for large spheres, which

neglects interferences and diffraction. We remind that for

large spheres, the surface can be considered as locally flat

and the emission is the same as for a semi-infinite flat

medium. As a consequence, no radius dependence is

observed at large radii in Fig. 1. The macroscopic emission

of a single sphere is the product of the surface area and

Stefan’s law Q¼ 4pR2erT4, where e is the total hemispheri-

cal emissivity of the material. For grey materials, the emitted

power is expected to be proportional to R2T4. The inset

presents the relative errors between the macroscopic and

wave models for gold and SiO2 spheres, which shows that

the macroscopic model is no longer correct for microspheres

(R< 150 lm for a relative difference larger than 5%, the

same criterion that was applied in Refs. 15 and 16). We warn

that this value is much larger than 10 lm, Wien’s wavelength

at room temperature, which is no more relevant because the

spectrum differs from that of Planck’s blackbody when

departing from the macroscale. Interestingly, for small radii,

we find that the total emitted power of gold spheres is pro-

portional neither to R3 nor to R2; the emission is not propor-

tional to the surface nor to the volume.

The size and temperature dependencies of the thermal

emission of small spheres can be analyzed in more detail by

approximating Eq. (1) to

Q ¼
ð1

0

dxHðx; TÞ x3

p2c3
ImðaEÞ þ ImðaHÞ½ �; (3)

where the electric and magnetic polarisabilities ap are given

by17

aE ¼ 4pR3 �� 1

�þ 2
; aH ¼

2p
15

R3 xR

c

� �2

ð�� 1Þ: (4)

For small metal spheres, the magnetic dipole dominates, and

using the Drude model for the permittivity of Al, it can be

shown that Im[aH(x)] is proportional to R5x at low frequen-

cies and R5x�1 at high frequencies.17 Their thermally radi-

ated power Q is therefore proportional to R5T6 at low

temperatures and R5T4 at high temperatures. This analysis

confirms that the emission is not proportional to the volume.

For small dielectric spheres, electric dipole dominates, and

using the Lorentz model for the permittivity of SiC, it can be

shown that Im[aE(x)] is approximated by R3x at low fre-

quencies (below the resonance) and R3x�3 at high frequen-

cies. The thermally emitted power Q is proportional to R3T6

at low temperatures and to R3T2 at high temperatures. Figure

2 shows the emitted power of Al and SiC spheres for radii

ranging logarithmically between 1 nm and 10 lm with differ-

ent temperatures. The results have been computed with Eqs.

(1) and (2). The black curves represent the results for the

FIG. 2. Emitted thermal power of (a) and (b) Al and (c) and (d) SiC spheres

for different radii and temperatures.
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permittivities that are independent of temperature, given by

Drude and Lorentz models taken at room temperature. The

predicted power laws mentioned before are indeed observed

for the small radii in this case as well as for small gold and

SiO2 spheres in Fig. 1. The blue curves correspond to the

results for dielectric functions depending on temperature.

While all the data have not been measured in the whole

range of computed temperatures, we include them by com-

puting and extrapolating the data for aluminum as in Refs.

16 and 18 to high temperatures. For silicon carbide, the

experimental data reported by De Sousa Meneses et al.,
found, e.g., in Ref. 19, are considered for temperatures larger

than 300 K. It is observed that the temperature dependence

cannot be neglected in all cases. The effect can be a soften-

ing or a strengthening of the emission, depending on the tem-

perature regime [see Fig. 2(b) for instance]. The emission of

the spheres can be compared with those of other configura-

tions. For instance, the total thermal emission by apertures

much smaller than Wien’s wavelength was found to be pro-

portional to T8 at low temperatures.20 This could indicate

that small objects emit drastically less than predictions from

Stefan’s law.

It is therefore interesting to observe in Fig. 1 that some

spheres, i.e., finite objects, can radiate more energy than

what an equivalent blackbody would (eeff,tot> 1).7 For

instance, the total effective emissivity of the SiO2 sphere of

radius 10 lm is slightly larger than 1. We acknowledge that

the experimental data21 of the dielectric function may not be

accurate enough to be certain that the effective emissivity

value is larger than 1. However, it is possible to increase

largely such a value as shown by the constant permittivity

material (green curve). In the following, we are interested in

studying the variation of thermal emission of spheres as a

function of their dielectric properties and radii. We note that

the permittivities of such homogeneous spheres do not

respect the Kramers-Kronig relations (KKR).22 The values

of � that we find could serve as guides to determine possible

KKR-compatible properties.

First of all, the influence of material properties on the

spectral emissivity eeff (x)¼pss/X
2 is investigated. Figure 3

presents the spectral emissivity of a sphere as a function of its

complex permittivity � for different size parameters X¼xR/c.

�max values for which the effective emissivity shows local

maxima in the complex permittivity plane are indicated with

arrows. The impact of three kinds of Mie resonances can be

observed.14 Resonances associated with real parts of the per-

mittivity close to�2 exist for a large range of size parameters.

Their emissivities are dominant for small X [see Fig. 3(a) for

X¼ 0.03] and much larger than one (blackbody emissivity for

X ! 1). These resonances are referred to as electric dipole

FIG. 3. Spectral effective emissivity of a sphere in the complex permittivity plane for different size parameters X¼xR/c. Specific values of the permittivities

and the associated maximal spectral effective emissivities are indicated (see supplementary material for a grayscale version of this figure).

FIG. 4. Spectral effective emissivity of a sphere of 1 lm radius for a constant

dielectric function �(x)¼�2þ 0.1359i (blue curve) and �(x)¼ 32þ 0.0663i
(green curve).
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resonances. For large X, the emissivities at resonances associ-

ated with real parts of the permittivity approximately equal to

one become dominant [see Fig. 3(e) for X¼ 103] and close to

the blackbody emissivity. The other resonances associated

with real parts different from �2 and 1 appear in the transition

regime (X� 1). Their spectral emissivities can be larger or

smaller than those of the dipole resonances (see Fig. 3 for

X¼ 0.3 and X¼ 1).

The effect of each kind of resonance on the emission is

now investigated. In Fig. 4, we compare the spectral emissiv-

ity of a sphere of radius 1 lm for two different dielectric con-

stants. The blue curve corresponds to a constant permittivity

(�max¼�2þ 0.1359i) associated with the dipole resonance,

and the green curve corresponds to a constant permittivity

(�max¼ 32þ 0.0663i) associated with another resonance.

Despite the fact that the radius is not always small compared

to the wavelength, the dipole resonance provides a total

emissivity larger than the other resonance in almost the

whole frequency range and especially in the lower part of the

spectrum. By contrast, Re(�)¼ 32 leads to sharp local peaks.

In the end, the dipole resonance leads to the strongest total

emission with eeff, tot larger than 1.

Finally, Fig. 5 shows the imaginary parts leading to the

maxima of emission as a function of size parameters (see

Fig. 3 for the values of the maxima). They can be distin-

guished depending on the values of the real part of the per-

mittivity associated with the different resonances [i.e.,

Re(�)¼�2, 1,…]. It is worth noting that a trend towards low

values of Im(�max) is observed for both small and large sizes.

Figure 3(a) seems to indicate that the largest effective emis-

sivities can be reached for the smallest objects. For large

finite objects with Re(�)¼ 1, the maximal emission is

achieved approximately for Im(�) / R�0.7. While it is known

that the optimal emission is achieved for �¼ 1þ ia, a! 0 if

a semi-infinite medium is considered (perfect blackbody), it

is not the case anymore for finite objects where the finite size

leads to a finite value of Im(�) for maximizing the emission.

This is due to the tradeoff between the transmission at the

interface, which decreases if Im(�) increases, and the absorp-

tion in the volume, which increases if Im(�) increases.

In conclusion, we have investigated the different emitted

power laws for metal and dielectric spheres of small and large

radii. A simple method has been proposed for predicting

results for permittivities independent of temperature. These

behaviors are modified for dielectric functions depending on

temperature. We have found that the usual emissivity concept,

associated with the surface state of a given material, breaks

down for particle radii smaller than 150 lm, and one option is

to replace it by an effective emissivity which depends on the

radius of the material. One original feature of low dimensions

is that the total power emitted can be characterized by power

laws as large as T6. In addition, we have studied the thermal

emission of non-magnetic homogeneous grey spheres as a

function of their dielectric function and have shown super-

Planckian emission. This regime can exist when the dielectric

function is close to that of the dipole resonance, while the

other Mie resonances do not lead to strong total emission even

in the transition regime. In the future, it will be important to

determine the impact of the shape, and not only the size, on

the emission.

See supplementary material for a grayscale version of

Fig. 3.
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