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Abstract: Phonon heat conduction has to be described by the Boltzmann transport equation (BTE) when 

sizes or sources are comparable to or smaller than the phonon mean free paths (MFPs). When domains 

much larger than MFPs are to be treated or when regions with large and small MFPs coexist, the 

computation time associated with full BTE treatment becomes large, calling for a multiscale strategy to 

describe the total domain and decreasing the computation time. Here, we describe an iterative method 

to couple the BTE, under the Equation of Phonon Radiative Transfer approximation solved by means of 

the deterministic Discrete Ordinate Method, to a Finite-Element Modelling commercial solver of the 

heat equation. Small-size elements are embedded in domains where the BTE is solved, and the BTE 

domains are connected to a domain where large-size elements are located and where the heat equation 

is applied. It is found that an overlapping zone between the two types of domains is required for 

convergence, and the accuracy is analysed as a function of the size of the BTE domain. Conditions for 

fast convergence are discussed, leading to the computation time being divided by more than five on a 

study case in 2D Cartesian geometry. The simple method could be generalized to other types of solvers 

of the Boltzmann and heat equations. 

  



I. Introduction and goals 

Heat conduction at nanoscale diverges from usual macroscopic heat diffusion in crystalline solids, as 

has been shown in the last decades both theoretically, numerically and experimentally. A key reason is 

that energy carriers do not undergo as many collisions at small scale due to their finite mean free path1–

4. For phonons, the average mean free path (MFP) is around 180 nm in silicon, with a distribution 

spanning from nanometers to tens of micrometers5,6. In order to describe accurately phonon transport, 

the Boltzmann transport equation (BTE), an equation of conservation of the density of energy carriers, 

is the tool of choice. The BTE for phonons was highlighted by Debye and Peierls and has been used 

successfully since that time. Since the phase space distribution function depends on 7 variables (the 

space variables, two variables for the direction, one for the frequency and one for time)  in general, and 

6 in the steady state, numerical solutions can be long to be obtained if the spatial domain becomes large, 

i.e. much larger than the MFP. There are two main types of methods than can be used for solving the 

BTE: stochastic methods, such as those involving Monte Carlo (MC) sampling of the dispersion curves 

or free paths7–9, and deterministic methods10. Among the last category, the Discrete Ordinate Method 

(DOM) is a popular method6,11–14, especially in the thermal radiation community where it has been 

developed since decades. The Radiative Transfer Equation (RTE) is an integrated version of the BTE, 

where the distribution function is replaced by the spectral radiance. The tools developed for the RTE 

can be applied for phonons without much difficulty, leading to the so-called Equation of Phonon 

Radiative Transfer (EPRT), where “radiative” is here meant as “ballistic”15. One has mostly to pay 

attention to the dispersion of phonons. Note that considerable body of work was realized in this field 

and that not all contributions can be mentioned here.  

Due to the large number of variables involved in the BTE and the large aspect ratios in the configurations 

to be considered, that can span more than 5 orders of magnitude, very lengthy computation times, when 

the problem is tractable in practice, are often observed. In order to circumvent such issue, different 

solutions can be envisaged12,16–22. Some of them involve splitting the phonon spectrum in order to solve 

the full BTE only for long MFPs12,19,20. Such strategy can be implemented into the whole computational 

domains. This can mean that long MFPs are still treated with BTEs far from the regions where nanoscale 

heat dissipation takes place, and there is still room for improvement as a consequence. The ballistic-

diffusive equations16,23 and associated improvements12 are also an option, based on well-known methods 

of the thermal radiation community24 treating the interaction with walls of the domains more accurately. 

The physics is sometimes complex and not everyone is able to deal with such frameworks, so there is a 

lack for simple tools. Here, we introduce a coupling between the BTE for phonons, which solves the 

phonon transport accurately at small scale, and the heat equation (HE), which is sufficient at large scale. 

Similar approaches have been addressed by Vallbahaneni et al.21 and Li et al.22, but in an effective one-

dimensional heat conduction configuration involving further complexity due to the stochastic nature of 

the Monte Carlo approach22 or by including thermal boundaries between materials which eliminate some 



complications as will be shown21. The present article investigates the coupling conditions in 2D 

Cartesian geometry between the phonon BTE solved by DOM and the heat equation solved by the Finite-

Element Method (FEM). Here, the first code is an in-house DOM code13,25 developed based on the work 

of Lemmonier and colleagues for thermal radiation, but other codes could certainly be considered 

instead. The FEM tool is commercial (COMSOL). An iterative method where boundary temperature 

and flux are exchanged between sub-domains where each equation is solved is introduced. Various 

difficulties are underlined, and it is found that an overlap between the two sub-domains allows 

converging toward the proper temperature and flux fields. The size of the DOM sub-domain required 

for accurate fields is investigated, as well as the computation time. It is found that the method can 

decrease the computation time by a factor larger than ~5 for computation over sub-millimeter sizes and 

makes it tractable to deal with domains of arbitrary size involving small scale phonon transport features. 

Note that this method is not based on the use of effective thermal conductivity or other effective 

parameters in FEM simulations, which can only provide approximate solutions. While the single MFP 

approximation is considered here for practical purpose, the method can be extended to full MFP 

distribution BTE deterministic framework under certain conditions. We also anticipate that it could be 

a basis for the coupling of MC methods with solvers of the heat equations. 

The paper is organized as follows. We first explain how the local temperature is computed in the frame 

of the EPRT approximation. We then remind few key points in the 1D configuration and indicate the 

2D Cartesian studied configuration. We then explain the different strategies tested for the coupling, and 

finally present the main outputs of the work. 

II. Equation of Phonon Radiative Transfer with an average mean free path 

II.A. Boltzmann transport equation for phonons 

Phonons, quantized lattice vibrations, are known as one of the main energy carriers in solids and 

transport energy by interaction among them. When the mean free path of travelling phonons is much 

larger than or comparable to dimension of the domain that is studied, phonons have few interaction with 

each other and local thermodynamic equilibrium does no longer exist. Heat transport is dominated by 

ballistic heat transfer and the Fourier law loses its validity.  

The BTE is a successful tool for describing (quasi-)particle, therefore incoherent transport in both 

rarefied and dense media, and thus can be applied for phonons (see e.g.1–4). In a system without external 

applied force, the equation is written in a simplified form under the relaxation time approximation: 

∂𝑓

∂t
+ 𝒗𝑔,𝑝 ∙ ∇𝑓 =

𝑓0 −𝑓

𝜏ω
, (1) 

where 𝑓(𝑡, 𝒓, 𝒔, ω) is the distribution of phonons and depends on time 𝑡, position 𝒓, emitted direction 𝒔 

and angular frequency ω, 𝑓0 is the equilibrium distribution function of phonons, 𝒗𝑔 is the phonon group 

velocity depending on the phonon polarization 𝑝  (one longitudinal acoustic (LA) mode and two 



transverse acoustic (TA) modes are considered here), and 𝜏ω is the frequency-dependent relaxation time 

of phonon-scattering processes. Note that the polarization dependence of f is omitted for the sake of 

brevity. The position 𝒓 has three components while the direction vector 𝒔 has two, namely the polar 

angle 𝜃 and azimuthal angle 𝜑. The left side of Eq. (1) represents changes in distribution function caused 

by motion, which deviates phonons from equilibrium state in phase space, and the right side represents 

changes caused by the collisions (interactions) of phonons, which usually tend to restore the phonon 

local equilibrium. Relaxation time approximation allows generalising scattering events by considering 

in an average way all collisions undergone by a group of phonons. It is well-known that phonons are 

quasi-particles obeying the Bose-Einstein statistics, 

𝑓0 =
1

e

ℏ𝜔
𝑘𝐵𝑇−1

 ,  (2) 

where ℏ is the reduced Planck constant, 𝑘𝐵 is the Boltzmann constant and 𝑇 is temperature. Similarly 

to the photon radiance (intensity) in the RTE, the phonon spectral radiance (intensity) can be defined as  

𝐼𝜔,𝑝 = 𝐼(𝑡, 𝒓, 𝒔, ω) = 𝒗𝑔,𝑝. ℏ𝜔. 𝑓.
𝐷(𝜔)

4𝜋
   (3) 

where 𝐷(𝜔) is the phonon density of states per unit volume. Combining Eq. (1) and (3) and introducing 

the mean free path of phonon Λω = 𝜏ω|𝒗𝑔,𝑝| , the BTE can be written in the phonon intensity form as  

1

|𝒗𝑔,𝑝|

∂𝐼𝜔,𝑝

∂t
+ 𝒔 ∙ 𝛁𝐼𝜔,𝑝 =

1

Λ𝜔
(𝐼𝜔,𝑝

0 − 𝐼𝜔,𝑝),  (4) 

where 𝐼𝜔,𝑝
0 = 𝐼𝜔,𝑝 for 𝑓0. Due to the similarity with the RTE, Eq. (4) is called the equation of phonon 

radiative transport (EPRT). Solving an equation over the density of quasiparticles (Eq. (1)) or over the 

density of energy (Eq. (5)) in the phase space leads to the same result and the same computational cost. 

By using normalized time 𝑡∗ = 𝑡/𝜏ω and 𝒓∗ = 𝒓/𝐿, where 𝜏ω is the average relaxation time of collision 

of phonon for angular frequency ω  and 𝐿  is the characteristic scale of the treated configuration 

(therefore 𝛁∗ =
𝜕

𝜕𝒓∗ = 𝐿𝛁 ), it is easily deduced that 

∂𝐼𝜔,𝑝

∂𝑡∗ + Kn𝜔,𝑝.  𝒔 ∙ 𝛁∗𝐼𝜔,𝑝 = 𝐼𝜔,𝑝
0 − 𝐼𝜔,𝑝, (5) 

where the dimensionless Knudsen number, i.e. the normalized mean free path (MFP), is defined as 

Kn𝜔,𝑝 =  Λ𝜔,𝑝/𝐿. It allows determining whether heat transport is dominated by diffusive or ballistic 

heat transfer. Previous work showed that when Kn < 0.02 heat transfer is diffusive and the Fourier law 

accurately predicts flux and temperature fields, showing a difference lower than 2 % compared to the 

predictions of the EPRT in 1D model. By solving Eq. (4), phonon spectral radiance at position 𝒓 and in 

direction 𝒔 can be firstly found out. Then, by integrating on solid angle and frequency and by summing 

up phonon modes, internal energy 𝑒 and heat flux 𝒒 can be formulated as  

𝑒(𝑡, 𝒓) = ∑ ∫ ∫
𝐼𝜔,𝑝(𝑡,𝒓,𝒔) 

𝒗𝑔,𝑝4𝜋
𝑑𝛺 𝑑𝜔

𝜔𝑚𝑎𝑥

0𝑝   (6) 



 𝒒(𝑡, 𝒓) = ∑ ∫ ∫ 𝐼𝜔,𝑝(𝑡, 𝒓, 𝒔) 𝒔
4𝜋

𝑑𝛺 𝑑𝜔
𝜔𝑚𝑎𝑥

0𝑝    (7) 

where 𝑑𝛺 = d𝜃. sin 𝜃. 𝑑𝜑 is the elemental solid angle and 𝜔𝑚𝑎𝑥 is the cut-off frequency depending on 

the phonon polarization. Temperature field at equilibrium can be found from Eq. (2) (note 𝒒(𝐼0 ) = 𝟎). 

A full Boltzmann treatment of phonon transport requires solving Eqs. (5-7). It can result in the local 

energy distribution deviating from equilibrium, i.e. being direction-dependent or having its intensity 

following a different statistics than the equilibrium one. It is often useful to plot ‘kinetic’ temperature 

distributions from the density of energy 𝑒(𝑡, 𝒓) by determining the equilibrium temperature T so that  

∑ ∫ ∫
𝐼𝜔,𝑝

0 (𝑇) 

𝒗𝑔,𝑝4𝜋
𝑑𝛺 𝑑𝜔 = 𝑒(𝑡, 𝒓)

𝜔𝑚𝑎𝑥

0𝑝 . (8) 

It is only a measure of the local energy, and should not be used to derive other thermodynamics quantities. 

II.B. Average mean free paths 

Integrating Eq. (5) over frequency and summing over the polarizations leads to the following equation: 

∂𝐼

∂𝑡∗ + (∑ ∫ Kn𝜔,𝑝 .  𝒔 ∙ 𝛁∗𝐼𝜔,𝑝 
𝜔𝑚𝑎𝑥

0𝑝
 
𝑑𝜔) = 𝐼0 − 𝐼 , (9) 

where 𝐼 = ∑ ∫ 𝐼𝜔,𝑝 𝑑𝜔
𝜔𝑚𝑎𝑥

0𝑝  is the phonon total radiance and therefore 𝐼0 = ∑ ∫ 𝐼𝜔,𝑝
0  𝑑𝜔

𝜔𝑚𝑎𝑥

0𝑝  . This 

equation can be further simplified by introducing an average mean free path Λ̅ and suggests to rewrite: 

∂𝐼

∂𝑡∗ + Kn̅̅̅̅  .  𝒔 ∙ 𝛁∗𝐼𝜔,𝑝 = 𝐼0 − 𝐼 , (10) 

where Kn̅̅̅̅  = Λ̅  /𝐿. Eq. (9) is an EPRT for the total radiance. If Eq. (10) is sufficient, this means that a 

single equation is to be solved, instead a large number depending on the spectral discretization in Eq. 

(5). Let us now comment on the derivation of Eq. (10), which is not at all straightforward despite its 

apparent intuitiveness. First, in the diffusive regime, the local distribution is only weakly distorted from 

equilibrium, and it is usual to write 𝛁𝐼𝜔,𝑝 =
d𝐼𝜔,𝑝 

0

d𝑇
𝛁𝑇. In this case one can equate Eq. (9) and Eq. (10), 

and this leads to an expression for the averaged mean free path: 

Λ̅0 =
1

d𝐼0

d𝑇

∑ ∫
d𝐼𝜔,𝑝

0

d𝑇
Λ𝜔,𝑝 𝑑𝜔

𝜔𝑚𝑎𝑥

0𝑝 . (11) 

This expression is equal to the average mean free path determined from thermal conductivity (𝑘 =

 ∑ ∫ ∫
d𝐼𝜔,𝑝

0

d𝑇
Λ𝜔,𝑝 cos2𝜃  

4𝜋
𝑑𝛺 𝑑𝜔

𝜔𝑚𝑎𝑥

0𝑝 ): 

Λ̅0 =
∑ ∫ ∫

d𝐼𝜔,𝑝
0

d𝑇
Λ𝜔,𝑝 cos2𝜃 

4𝜋
𝑑𝛺 𝑑𝜔

𝜔𝑚𝑎𝑥
0𝑝

∑ ∫ ∫
d𝐼𝜔,𝑝

0

d𝑇
 cos2𝜃  

4𝜋
𝑑𝛺 𝑑𝜔

𝜔𝑚𝑎𝑥
0𝑝

=
𝑘

1

3
<𝑐𝑣>

. (12) 

where < 𝑐𝑣 >= ∑ ∫ ∫
𝑑𝐼𝜔,𝑝 

0

𝑑𝑇4𝜋
 𝑑𝛺𝑑𝜔 = ∑ ∫ 𝑐𝑝(𝜔)𝑣𝑔,𝑝(𝜔)𝑑𝜔

𝜔𝑚𝑎𝑥

0𝑝
𝜔𝑚𝑎𝑥

0𝑝  is an integral over acoustic 

modes, involving the volumetric heat capacity associated to acoustic modes and the mean group velocity 

of phonons v. For silicon, one finds Λ̅0 = 183 nm at 300 K for 𝑘 = 148 W.m-1.K-1. In this regime, 



considering the average mean free path in Eq. (5) or the whole distribution does not make any difference, 

and it is of course easier to solve Eq. (10). However, when far from the diffusive regime (Kn̅̅̅̅ ≫ 0.01), 

the previous way of deriving Eq. (10) is not possible in principle. In the particular cases where the 

temperature-dependence of the spectral mean free paths can be neglected or where the mean free path 

distribution is assumed homogeneous in the whole domain, one can obtain the following expression for 

the averaged mean free path: 

Λ̅ =
1

𝐼
. ∑ ∫ Λ𝜔,𝑝 .  𝐼𝜔,𝑝 

𝜔𝑚𝑎𝑥

0𝑝
 
𝑑𝜔. (13) 

In the ballistic regime, the local phonon radiance deviates more strongly from equilibrium, and, as a 

result, the radiances in Eq. (13) are not equilibrium ones. This means that the averaged mean free path 

is different to that of Eqs. (11,12). It can be angle-dependent, and hemispherical (two values depending 

on direction) in the ballistic limit in a 1D configuration. However, we will solve Eq. (10) and keep Eq. 

(11) (around room temperature) in the following sections, for the sake of simplicity. Currently, the 

spectral mean free paths considered within BTE are those determined at equilibrium, so there is anyway 

probably some variation when in the ballistic regime. Addressing this issue is much beyond the scope 

of this article. 

Note that simplified version of Eqs. (9,11), where the integrals cover the whole frequency range (no cut-

off) and where possibly a single (averaged) polarization is used, were sometimes considered in the past, 

as this allows to formulate an equation over 𝐼 = ∫ 𝐼𝜔 𝑑𝜔
∞

0
 with simple analytical expressions in a 

fashion parallel to the 𝐼0 = 𝜎𝑇4/𝜋  case of photons15,20,22. Such approach can lead to plausible 

temperature profiles at room temperature, but leads unfortunately to very inaccurate fluxes. This 

approach should therefore be limited to low temperature, where the ratio of the Debye frequency to the 

Wien one is large. 

II.C. Brief reminder on the Discrete Ordinate Method 

In this work, we solve the EPRT by means of the Discrete Ordinate Method (DOM)25,26. The main idea 

of DOM is to discretize the angular space in a finite number of directions. The phonon intensity is 

computed in each direction, and the integration along the solid angle is replaced by a discrete sum over 

the discretized angles with weights. Since all directions of phonon radiation are treated by DOM, it can 

be used in particular for non-isotropic boundary conditions like specular reflection or intermediate ones20. 

The EPRT in a steady-state 2D problem, where the first term of Eq. (10) vanishes, is first discretized as 

a function of the solid angle as follows: 

  𝜇𝑚
𝑑𝐼𝑚 

𝑑𝑥
+ 𝜂𝑚

𝑑𝐼𝑚 

𝑑𝑦
=

𝐼𝑚
0 −𝐼𝑚

Kn̅̅ ̅̅  
, (14) 

where 𝜇𝑚, 𝜂𝑚 are respectively the 𝑥 − and 𝑦 −projections of 𝒔𝑚, where 𝑚 is the index associated to 

one direction in the whole discretized angular domain, and 𝐼𝑚  is phonon intensity in direction 𝒔𝑚. The 



number of directions is selected to fulfil certain symmetries of the problem and 𝑚 ∈ [1, 𝑁(𝑁 + 2)] for 

a 𝑆𝑁 discretization scheme. The reader is referred to Refs. (19-20) for more extensive details on 𝑆𝑁. 

With  𝑤𝑚  representing the weight of the discretized elemental solid angle in direction 𝒔𝑚 , the 

integration along the solid angle is transformed into the discrete form and so are internal energy and 

heat flux: 

∑ 𝑤𝑚
𝑁(𝑁+2)
𝑚=1 = ∫ 𝑑𝛺

4𝜋
   (15) 

𝑒 = ∑ ∫ ∑
𝑤𝑚𝐼𝜔,𝑝(𝑡,𝒓,𝒔𝑚) 

𝒗𝑔,𝑝

𝑁(𝑁+2)
𝑚=1 𝑑𝛺 

𝜔𝑚𝑎𝑥

0𝑝   (16) 

 𝒒 = ∑ ∫ ∑ 𝑤𝑚𝐼𝜔,𝑝(𝑡, 𝒓, 𝒔𝑚) 𝒔𝑚
𝑁(𝑁+2)
𝑚=1 𝑑𝛺 

𝜔𝑚𝑎𝑥

0𝑝   (17) 

One issue of the method is that some ray effects, i.e.an overestimation of certain directions in the ballistic 

regime, may appear when N is too low. We have found that 𝑁 = 12 allows to obtain relatively smooth 

angular patterns in 2D with moderate computational cost27, and such discretization scheme is used in 

the following. 𝑆6  is clearly insufficient, and if computational cost can be extended, 𝑆20  can be 

considered. Note that the CADOM approach12, not performed here, helps in decreasing the impact of 

the ray effect. In the present study, the spatial domain is discretized by regular elements in Cartesian 

geometry and a Finite Volume Method is implemented (see Ref. 19 for more details). 

 

III. Key features of the transition from diffusive to ballistic transfer in a 1D geometry 

(a) 

 

(b) 

 



(c) 

 

(d) 

 

  

  

Figure 1. Simulation with EPRT by DOM in a 1D problem. (a) 1D configuration and parameters, with 

the tested domain size varying from microscale to macroscale; (b) Normalized temperature profile with 

various tested domain sizes, i.e. Kn; (c) Heat flux normalized by the corresponding predictions from the 

Fourier law as a function of the nondimensioned length (left scale) and absolute values from EPRT and 

HE for the same domain sizes; (d) Calculation times as a function of Kn. Two cases are shown: fixed 

number of mesh elements (circles) and fixed mesh element size ∆𝑥 (triangles). 

 

We first start by few reminders on the transition from the diffusive to the ballistic regime in a simple 

configuration28. Based on the previous work by Volz et al.13, the DOM code for solving the EPRT is 

applied to a 1D domain. Note that the current DOM solver of COMSOL (used e.g. in Ref. [6]) was 

found to be very slow in comparison to our solver27 and, in addition, may not be not straightforward to 

accommodate to the need for considering the right spectral range for the phonon intensity. This is 

unfortunate as this could have allowed to implement easily the coupling strategy in a fully-commercial 

widespread software. Boundary conditions are shown in Fig. 1(a). Bulk silicon is chosen for all 

simulations, with the average MFP of phonon set equal to 180 nm. In order to characterize properties of 

heat transfer from the ballistic to the diffusive regime, the length of the 1D region ranges from 40 nm to 

10 μm, which means that Kn (the overline denoting the averaging is omitted in the following) varies 

accordingly from 5 to 0.02. DOM calculations were considered as converged once relative difference of 

phonon intensity between current iteration and previous one was less than 10−18. It is worth mentioning 

that when ballistic conduction dominates the critical value of the relative difference above can be relaxed 

to 10−12, resulting in a difference of temperature less than 10−6K. However, for quasi-ballistic and 

diffusive problem, the critical value should be stricter and no more than 10−15 in order to keep the same 

accuracy. 



Fig. 1(b) shows the normalized temperature 𝑇∗ =
𝑇(𝑥∗)−𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛
 profile for various medium lengths while 

number of elements in the mesh is kept constant and is equal to 1000. The solution of the EPRT has 

little difference with Fourier’s law prediction under the condition Kn < 0.02, confirming that heat 

transfer is almost mediated by diffusive transport for large sizes. We just note a slight deviation to ratio 

1 at small Kn in Fig. 1(c) due to the limited discretization scheme 𝑆12 selected as a good compromise 

for all calculations. Decreasing the domain length, the transition towards ballistic transport progressively 

takes place, leading to temperature jumps at the contacts with the thermostats. In the ballistic limit, the 

temperature profile is flat. It is interesting to analyze the deviation to the Fourier prediction as a function 

of medium length. Fourier’s law 𝒒𝐹𝑜𝑢𝑟𝑖𝑒𝑟 = −𝑘𝛁𝑇 tells us that in 1D  𝑞 = 𝑘
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

𝐿
.  We normalize 

the heat flux found by the EPRT by this value. It is observed that, compared with diffusive heat transfer, 

ballistic transport is not able to efficiently transfer heat as a consequence of the lack of phonon collisions. 

Besides, as an important feature for the following, calculation time of the EPRT is displayed in Fig. 1(d). 

By keeping the number of elements in the mesh as constant, the slope varies only in a limited way, 

indicating that computational time increases exponentially from seconds to hours when decreasing Kn. 

That is because the EPRT describes changes due to collisions and there are much more collisions in the 

diffusive regime (Kn ≪ 1) than in the ballistic one (Kn ≫ 1). In the other case where the size of mesh 

element is kept constant, which seems more accurate, the computational time increases much faster 

when Kn decreases because the quantity of mesh elements increases on top of the previous reason. Such 

test indicates that larger-dimension domains (2D or 3D) could lead to very-large and probably intractable 

computation time in the case of complex configurations, reflecting the necessity of finding alternative 

strategies than full-BTE computation. Coupling the EPRT and the heat equation based on Fourier’s law 

is the option studied in the following.  

 

IV. Heat dissipation from wire-on-substrate configuration 



IV.A. Geometry   

Figure 2. 2D Cartesian wire-on-substrate configuration under study.  

The tested configuration is reminiscent of the nanowire of rectangular cross-section deposited on top of 

a silicon substrate. This configuration has been considered in particular in the works by Mazumder et 

al. 11 and experimentally tested by groups in Boulder29, Lyon30, Purdue31, Caltech32 and MIT33. The wire 

undergoes either Joule self-heating due to the transverse flow of electrical current or is simply heated 

remotely in non-contact way as it absorbs partly light from an optical beam at a wavelength where the 

substrate is transparent. Here, we consider only steady state, in contrast to some of the experimental 

works. The wire is treated as fixed-temperature segment of length l on top of the domain. The size of 

the segment was varied, but we will mostly report the l = 200 nm case. This is close to the average MFP 

of silicon at room temperature, therefore the Knudsen number associated to the heat source is Kn ~ 1, 

thus ballistic conduction occurs around the thermal source. The domain is 100 µm large, but due to the 

adaptive mesh of current FEM solvers, for which the number of mesh elements does not scale steeply 

with the size, the cost of increasing the domain would not be important. Far from the heater, for instance 

at a distance larger than 50 times the MFP (~10 μm in our case), thermal conduction is dominated by 

diffusive conduction. Hence, the whole domain can be divided into two parts: a region where accounting 

for ballistic dissipation is required and another region where heat diffusion is sufficient.  

 

IV.B. Estimation of heat dissipation 

Heat dissipation from the source can be estimated based on values of the thermal resistance to a large 

heat bath. This does not provide the temperature or flux distributions inside the domain, but can still be 

useful. For very small Kn, i.e. large sources, the dissipation can be treated analytically. To provide an 

idea, let us consider that the heater is a half circle of radius a and the total domain a half disc of radius 

b. In this cylindrical configuration, we immediately find that the thermal resistance is 𝑅 =
1

𝜋𝑘
ln

𝑏

𝑎
, where  



(a) 

 

(b) 

 

 

(c) 

 

(d) 

 

  

Figure 3. Reference solutions obtained from the heat equation (a,c) and from the BTE-EPRT solver 

(b,d). (a,b) Temperature fields. (c,d) Heat flux fields. 

 

k is the thermal conductivity. A logarithmic dependence on source and domain sizes is observed. The 

Cartesian geometry can also be treated analytically for the case of a finite thickness t and infinite domain 

width, and one finds a thermal resistance per unit length: 

𝑅𝑑𝑖𝑓 =
1

𝜋𝑘
[ln (

𝑏

𝑡
) − 𝛽], (18) 



where 𝛽 =1.048434. Another limit is the very large Kn case, where the dissipation is fully ballistic and 

the heat transfer is fully dominated by the ballistic resistance per unit length 𝑅𝑏𝑎𝑙 that can be computed 

analytically: 

𝑅𝑏𝑎𝑙 =
4

<𝑐 𝑣>𝑏
. (19) 

In the transition regime where 𝑏~Λ, the resistance is often treated with the Wexler approximation35, a 

Matthiessen rule between the diffusive and ballistic cases 𝑅𝑑𝑖𝑓 + 𝑅𝑏𝑎𝑙. Such approximation is known to 

depart by few tens of per cents from the exact solution in this intermediate regime, so a full numerical 

treatment involving the BTE is to be applied for quantitative results. As a side comment, let us recall 

the reason why the Wexler approximation is not so far from the exact result. Heat flows from the 

constriction towards the bath, so if the source characteristic width is sub-MFP the total thermal resistance 

is the sum of a ballistic resistance and a diffusive one, the latter being associated with a region away 

from the source. It can be estimated that this region starts for a radial distance 𝑏𝑑𝑖𝑓𝑓  ≈ 𝐾 Λ, where 

K=O(1) is a geometrical parameter larger than 1. If the source size is much larger than Λ, then only Eq. 

(18) applies. In the end, a weighted average of 𝑅𝑑𝑖𝑓 and 𝑅𝑏𝑎𝑙 is sufficient to describe the total thermal 

resistance, with weights being functions of (t,b) and equal to unity for each resistance asymptotically. 

Here, it can be shown that the thermal total resistance is dominated by 𝑅𝑑𝑖𝑓. 

In order to obtain the full temperature and flux fields a full BTE resolution, involving the coupling 

framework in the case of large values t, is anyway required. Figs. 3 provide reference results obtained 

either with the heat equation (HE) or with the BTE in the EPRT approximation (computation time 

discussed later in Tab. 1). It can be seen that for this particular configuration the correct temperature 

field (BTE) is close to that obtained with the HE when away from the hot source, in agreement with the 

suggestion that the thermal total resistance is dominated by 𝑅𝑑𝑖𝑓. Nevertheless, the local temperature is 

lower than that predicted by the HE just below the heat source. In addition, the flux fields appear to be 

very similar in the two cases, as dictated be the conservation of energy, albeit small difference can be 

observed. The reader is referred to previous studies for detailed analyses of this configuration11,31.  

 

V. Coupling conditions 

V.A. Initial idea of the coupling process 

The coupling scheme to be tested is represented in Fig. 4. With the aim of saving numerical calculation 

time, the whole domain is initially separated into two regions as shown in Fig. 5(a). The BTE sub-

domain, which is around the heat source, is associated to a Knudsen number involving its size (~10 µm 

in this example): Knx = Kny = 0.02. DOM is applied in this sub-domain. The rest of the medium is the 

HE sub-domain, where the Fourier law can be applied without causing much error by using a FEM 



solver (commercial COMSOL tool used in our case). The working principle of coupling BTE and HE, 

displayed in Fig. 4(a), is initially as follows. In the zeroth step, the whole domain is initialized with HE, 

which allows getting initial values of temperature 𝑇𝑏 and flux 𝒒𝑏 . 𝒏 = 𝑞𝑏𝑛 at the BTE-HE boundary, 

where n is the unit vector normal to the boundary. Then, the first step starts when the BTE is solved on 

its sub-domain by DOM (EPRT code programmed in Fortran) with boundary condition 𝑇𝑏  (in 

conjunction with the other conditions at the external boundaries which are fixed), so that temperature 

and heat flux fields are obtained within the BTE sub-domain. 

 

Figure 4. Coupling scheme involving two sub-domains where the Heat Equation and the Boltzmann 

Transport Equation in the EPRT approximation are solved. Purple: FEM solver (COMSOL), Grey: 

EPRT solver (Fortran), Green:  data treatment steps (Matlab). 

 



In particular, the updated heat flux 𝑞𝑏𝑛
𝑛𝑒𝑤 is obtained at the BTE-HE boundary. Next, 𝑞𝑏𝑛

𝑛𝑒𝑤 is introduced 

as a boundary condition in the HE sub-domain (in conjunction with the conditions at the external 

boundaries) for solving HE by FEM, which allows finding the temperature and heat flux in the HE sub-

domain (in our case, this is done by means of the ‘COMSOL with Matlab’ tool). In particular, this allows 

obtaining an updated temperature 𝑇𝑏
𝑛𝑒𝑤at the BTE-HE boundary. At this stage, the temperature and heat 

flux fields of the whole domain have been computed. A first iteration is therefore completed. A 

convergence criterion is then to be checked at the BTE-HE boundary. 𝑇𝑏
𝑛𝑒𝑤 is compared with 𝑇𝑏, and 

the same for 𝑞𝑏
𝑛𝑒𝑤 and 𝑞𝑏. If the converging criterion is not satisfied, a new loop is necessary. The 

process involving the two sub-domains is renewed until convergence is reached.  

Some complication can arise at the end of the first iteration, if the initialization (zeroth step) leads to 

temperature/flux fields too far from the actual solution. At the BTE-HE boundary, temperature may 

become larger than heat source temperature or smaller than the cold bath one. In this case some condition 

can be added to limit the temperature variation within a certain range, with a relaxation criterion 

𝑇𝑏
𝑛𝑒𝑤2 = 𝑓(𝑇𝑏

𝑛𝑒𝑤, 𝑇𝑏). It was found in particular that this is needed if initialization is done by solving 

the HE over the whole domain. A simple function 𝑓(𝑇𝑏
𝑛𝑒𝑤, 𝑇𝑏) =

𝑇𝑏
𝑛𝑒𝑤+𝑇𝑏

2
 was chosen in our case. 

Such coupling process was tested and, while initially temperature and flux seemed to converge when 

iterating and reached distributions close to the actual full EPRT solution after several loops, the process 

ended up to diverge, generally after the 7th loop. This is in contrast with the 1D case and with the 2D 

case of Vallhabeni et al.21, who applied a similar strategy but where the BTE-HE boundary was also a 

physical boundary between materials leading to a thermal boundary resistance. We will show below that 

additional consideration was therefore required in our case. 

 

V.B. Additional requirements for coupling and criteria 

Different strategies were tested to control the over-reaction in the coupling process. We note that the 

starting of the divergence process is best seen when observing the flux distribution (see Fig. 5(b)). The 

strategies were as follows: 

(1) Smoothening the temperature on the boundary. We noted small difference in temperature 𝑇𝑏 for 

symmetric points with respect to the vertical axis of symmetry. Ascribing the average to each points did 

not improve much. 

 

 



(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

 

Figure 5. Strategies for improving the convergence. (a) Intuitive coupling strategy, found insufficient. 

(b) Observation of the flux field at the 8th step, when the divergence process becomes obvious. (c) 

Strategy of eliminating the abrupt change of boundary condition by rounding the corners. (d) 

Observation of the flux field at the 8th step, when the difficulty at the connection between the rounded 

part and the initial boundary is observed. (e) Strategy of overlapping the BTE and HE sub-domains: the 



boundary condition 𝑇𝑏  for the HE sub domain is taken inside the BTE sub-domain (green dotted 

rectangle). The overlapping region has the fixed width ∆𝑙 = 0.5 μm. 

 

(2) Eliminating the corners. Since it was observed that the divergence starts close to the corners (see 

Fig. 5 (b)), various tests where the corners are replaced by rounded (circular) boundaries for the HE sub-

domain were implemented (Fig. 5(c)). Quadratic and quartic (continuity of flux and total power crossing 

the boundary at the circle) laws interpolating between the normal fluxes at the extremities of the circles 

were tested, but it was observed that the connection between the circles can still lead to issues after few 

loops (see Fig. 5(d)). 

(3) Taking the boundaries for the HE sub-domain inside the BTE domain. Since some issues were always 

present at the connections points and boundaries between the two sub-domains, it was decided to choose 

a region inside the BTE domain for the boundary of the HE sub-domain. In this way, some discretization 

issue at the boundary may be lifted. In the end, it means that the two sub-domains possess a common 

zone, called the “overlapping zone” and highlighted in Fig. 5(e). It was found that this method allows 

for convergence of the process. 

 

As a result of this phase of tests, the convergence was found for the relaxation function and the 

overlapping of BTE and FEM sub-domains displayed in Fig. 5(e), leading to the results of Fig. 6. 

Convergence is ensured by analyzing the relative difference of heat flux at boundary between current 

and previous loops |
𝑞𝑏−𝑞𝑏

𝑛𝑒𝑤

𝑞𝑏
| < 𝜀𝑐, where 𝜀𝑐 is the critical value of relative difference and is equal to 

10−6. Such condition is more accurate than a condition on temperature. The heat flux distribution is 

shown in Fig. 6. A small deviation between the fluxes is observed in Fig. 6(b) when the flux in the 

overlapping zone is chosen from the DOM results, which is due to a discontinuity of the heat flux in the 

direction parallel to the interface at the sub-domain boundary. As a consequence, the heat flux should 

preferentially be chosen in the HE sub-domain in order to keep the connection between the two sub-

domains smooth (Fig. 6(c)). We note that coupling FEM, which does not inherently guarantee local flux 

conservation, and Finite-Volume Method may not be the optimum choice from the mathematical side, 

however it is shown here that a solution for the coupling of popular FEM and DOM/FVM solvers is 

found. 

 

VI. Performances 



The performances of the coupling process were assessed with respect to two objectives: (i) obtaining 

accurate results and (ii) obtaining results as fast as possible. This required first to select a given size for 

the BTE sub-domain and then varying this size. 

 

 

 

(a) 

 

(b) 

 

 

(c) 

 

 

Figure 6. Heat flux field after convergence of the method involving BTE/HE sub-domain coupling. 

(a) Whole distribution of the normal flux, (b,c) zooms on the connecting boundaries with data in the 

overlapping region from (b) the EPRT solver and (c) the FEM solver. 

 

VI.A. Efficiency and accuracy of the coupling 



Three initial simulations were performed: two with the coupling process involving different number of 

mesh elements, and one without coupling where the EPRT is solved by DOM over the whole domain. 

In the coupling cases, the calculation time of FEM is about seconds and therefore much smaller than 

that of DOM. Thus, it can be concluded that time is mostly due to the EPRT resolution (in our case by 

DOM) and it was found that it is linear to the number of mesh elements by comparing tests 1,2 and the 

reference. The EPRT (DOM) calculation is time consuming and most probably limited by the random 

access memory, especially if the calculation is performed with desktop computer. As a result, the 

discretization used for very-large domains cannot be as fine as in the case of small domains. Here, the 

same mesh size (mesh element size of 0.1 µm) could be kept identical for the reference simulation where 

the whole domain is solved by DOM (see Tab. 1) and for test case 1, so the heat flux of these two tests 

could be compared to analyze the accuracy of the coupling method. For all three cases, the tolerance of 

relative phonon intensity in the DOM computation was kept equal to 10−18  and the convergence 

criterion for the coupling process was focused on a relative difference of heat flux set as 𝜀𝑐 = 10−6 (as 

mentioned in Section V.B). Tab. 1 shows that despite better resolution close to the heat source the 

coupling process allows obtaining the results in much faster way, at least by one order of magnitude. 

 

Table 1. Parameters of three tests for determining the efficiency and accuracy of the coupling 

method for comutation over a (100 μm)2 domain  

 

The relative difference between the results of the reference and case 1 is shown in Fig. 7 by mapping 

|
𝑞𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔−𝑞𝐸𝑃𝑅𝑇

𝑞𝐸𝑃𝑅𝑇
| . We remind that we focus on the flux, which is more sensitive. It is observed that the 

maximal relative difference takes place at the top sides, where the boundary condition is thermal 

insulation and therefore 𝑞𝐸𝑃𝑅𝑇~𝑞𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔~0. The relative difference in the other parts of the domain is 

at worst ~5%, in particular around the heater. This might be due to the size of the BTE sub-domain 

selected and is investigated below. Comparing tests 1 and 2, we verified also that an increase of mesh 

density helps reducing this error, giving an evidence that some error is due to the somehow loose mesh 

Test Method 

Dimension of BTE 

DOM  

(sub-)domain 

Number of mesh elements in 

the BTE DOM (sub-)domain 

Calculation 

time 

1 Coupling 

process 

𝑙𝑥 = 20 μm, 

𝑙𝑦 = 10 μm 

𝑛𝑥 = 200, 𝑛𝑦 = 200 ~ 1 day 

2 𝑛𝑥 = 400, 𝑛𝑦 = 400 ~ 4 days 

Ref. 

EPRT by DOM 

over whole 

domain 

𝑙𝑥 = 100 μm, 

𝑙𝑦 = 100 μm 
𝑛𝑥 = 1000, 𝑛𝑦 = 1000 ~ 4 weeks 



close to the thermal source (
Δ𝑥

Λ
~0.5 in test 1 and 0.25 in test 2). Note also that the error seems to be 

large especially around some directions, and could therefore be linked to the angular discretization (‘ray 

effects’, see Ref. [36]). We speculate that it could be reduced for an improved order of discretization. In 

the end, the obtained results with the coupling seem to be close to those with the whole EPRT/DOM 

solver, which is itself probably not fully accurate due to the compromise needed to reach convergence. 

Figure 7. Map of relative difference of heat flux between the coupling and the EPRT. Only DOM 

domain and a small region close to overlapping area is shown in order to observe more details in DOM 

domain. White lines indicate the domain boundaries. 

 

VI.B. Optimal size of the BTE sub-domain 

 

Figure 8. Total heat flux dissipated into the domain as a function of the Knudsen number of the BTE 

sub-domain (solid line). 

 



The size of the BTE sub-domain has to be as large as possible to be close to the exact result, but as small 

as possible for minimizing the computation time. A compromise is therefore to be selected. A Knudsen 

number can be associated to the BTE sub-domain size (from its largest dimension), and should be as 

small as possible for improved accuracy. We have varied the dimension of the BTE sub-domain DOM 

so that the corresponding Knudsen number was changed from 0.3 to 0.017. The total heat flux into the 

domain was obtained by computing 𝑄𝑖𝑛 = ∮ 𝒒 ∙ 𝒏 𝑑𝑙
𝒒∙𝒏>𝟎

, where 𝒏 is unit normal vector of boundary 

and 𝑑𝑙 is element of boundary, and is reported in Fig. 8. When the sub-domain Kn decreases, the 

integrated heat flux into the whole domain converges to a certain value, which is close to the numerical 

solution of the reference case where the EPRT is solved over the whole domain. It can be concluded 

that when Kn approaches 0.02, the relative difference between the coupling process solution and the 

reference result is smaller than 0.25%. This means that the BTE sub-domain size should allow for 

diffusive conduction close to its boundary. Indeed, Fig. 1(b) clearly shows that the diffusive regime is 

achieved for such value of the Knudsen number. Interestingly, even when Kn is as large as 0.1 in a 2D 

problem, the relative difference between the two solutions stays below 1% as shown in Fig. 8. Hence, it 

is possible to chose Kn = 0.1 for the effective Knudsen number of the BTE sub-domain in a 2D 

configuration and therefore save time while the error stays limited. 

 

VII. Conclusions and prospects 

The semi-classical Boltzmann transport equation, here solved within the EPRT approximation, has the 

capacity to correctly describe heat conduction by phonon in both diffusive and ballistic regime. However, 

calculation time increases exponentially while Kn decreases from ballistic domain to diffusive domain, 

which is a strong inconvenience. We have introduced a simple method to solve efficiently phonon heat 

conduction over large domains, which is based on the coupling between the Boltzmann equation (solved 

by DOM with a Finite Volume Method for the spatial discretization) and the heat equation (solved with 

FEM). It aims at saving simulation time while maintaining the accuracy of the results. From all the 

numerical simulations above and the hypotheses used in this report, several conclusions can be drawn: 

1. Coupling the BTE and the heat equation allows reducing the computational time. This was realized 

with an iterative method, which involves an overlap between the sub-domains for configurations 

beyond 1D22 and when no thermal boundary between differing materials is present21. The coupling 

method helps reducing the total computational time by an order of magnitude (factor ~5 or ~20 

depending on the accuracy expected from the results), demonstrating the feasibility of this new 

method.  

2. The performance of the coupling has been investigated. For selected sets of parameters, the error 

stays limited below 5% away from insulating boundaries.  



3. The effective Knudsen number required for the BTE sub-domain has been determined. A Knudsen 

number equal to 0.02 is required to ensure diffusive conduction but numerical results show that 

values up to 0.1 are still acceptable. This allows to further reduce the computational time by an order 

of magnitude. 

A few comments are in order now. 

(i) Here, only a single mean free path was used. However, a spectral BTE can also be used in the BTE 

sub-domain, and the present results are providing insights toward such approach. Convergence would 

certainly be achieved for BTE sub-domain size designed as a function of the largest mean free path. 

Faster results would be obtained by selecting the size of such domain from the largest significantly-

contributing mean free path. It may happen for some materials that these large mean free paths have 

sizes close to that of the whole domain and that their contribution to the total energy transfer is 

significant37, precluding the use of the method highlighted here. In this case, additional strategies for 

addressing short MFPs without solving the BTE would be the solution for reducing the computational 

time19–21. 

(ii) We anticipate universal application of the method, which was tested only with DOM and FEM, to 

other types of solvers. It is possible that the overlap would be not required for solvers based on different 

schemes. For the phonon BTE, the Monte Carlo method is spreading due to its ability to cope with very 

complex geometry. The statistical and random error nature of the MC results could lead to additional 

complexity, requiring regularization at the boundary38 or extra thermostat22.  

(iii) While the coupling was only tested in Cartesian 2D geometry, it is certainly possible to generalise 

to 3D as was shown by Vallabhaneni et al.21 in the particular case of a GaN transistor. 

(iv) Implementing the coupling process in configurations where amorphous materials, thermal boundary 

resistances or electronic heat conduction are present will open a full avenue for quick and accurate 

thermal simulations. 

There are certainly many more strategies possible for improving the speed of phonon multiscale heat 

conduction, in particular adaptive meshes in the BTE domains. However, as modern technology has 

stepped into nanoscale and exact solutions for multiscale thermal problems have become an urgent 

challenge for industry39,40, the present coupling method does already provide a useful tool for current 

demand and has broad and easy application prospects. 
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