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A dual radiative heat engine is a device made of two facing optoelectronic components (diodes)
and capable of generating electrical power from heat. It can operate in three different regimes de-
pending on the component biases, namely in thermoradiative-negative electroluminescent (TRNEL),
thermoradiative-photovoltaic (TRPV) or thermophotonic (TPX) regimes. The use of dual engines
gives access to operating conditions which are unachievable by single radiative engines such as ther-
mophotovoltaic systems: at the radiative limit, TRNEL devices systematically reach the Carnot
efficiency, while TPX devices can achieve large power outputs by means of electroluminescent en-
hancement. Upper bounds of the maximum power output and related efficiency achieved by dual
engines are derived analytically, and compared to usual bounds. Spectral filtering and nonradiative
recombinations are also briefly considered. This work provides common framework and guidelines
for the study of radiative engines, which represent a promising solution for reliable and scalable
energy conversion.

The conversion of heat into electrical power by opto-
electronic means has gathered sizeable attention in the
past decades. The two most popular solutions are pho-
tovoltaics (PV) for solar application, and thermophoto-
voltaics (TPV) [1–4]. In the latter case, the radiation
comes from a hot emitter maintained at a high tempera-
ture by the input heat. This gives access to a broad range
of applications, for instance in latent heat TPV batteries
[5]. Apart from PV and TPV, other optoelectronic sys-
tems are able to convert heat to electricity. One is the
thermoradiative (TR) cell: as opposed to the PV cell,
it is able to generate electrical power by emitting neg-
ative electroluminescent radiation to the cold surround-
ings [6, 7] (e.g. the night sky, outer space) or towards a
cold absorber [8]. TR cells, along with PV and TPV cells,
are single radiative heat engines: they are heat engines
in which one active component produces electrical power
either by emitting or absorbing radiation [9]. Their typ-
ical electrical characteristic is provided in Section I of
Supp. Mat. [10]. Radiative engines are part of the larger
group of solid-state heat engines [11], along with ther-
moelectric [12] and thermionic generators [13], and thus
compete with such systems in the field of reliable and
scalable energy conversion.

It is also possible to couple two different optoelectronic
components into a dual radiative heat engine (see Fig. 1).
One such dual engine is the thermoradiative-photovoltaic
(TRPV) device [14, 15], in which a hot TR cell is cou-
pled to a cold PV cell: both components are then able
to generate electrical power, although production by the
TR cell limits its emission due to negative electrolu-
minescence, and therefore reduces the PV cell produc-
tion. Nonetheless, having two components provides bet-
ter control of the operating conditions. Thermophoton-
ics (TPX) [16–18] has also gathered interest recently. In
such a device, the hot emitter is a light-emitting diode
(LED). While an LED consumes electrical power, it is
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FIG. 1: Representation of the dual radiative engine
(here in a thermophotonic configuration).

able to emit electroluminescent radiation towards the PV
cell with an above-unity wall-plug efficiency, enabling a
significant increase in power output. Recently, TPX de-
vices have mostly been studied in near-field operation,
as near-field radiation further increases the power out-
put [19, 20] and limits the impact of non-radiative losses
[21].

Although the aforementioned systems are all radiative
heat engines and share the same core physical laws, they
are studied independently of one another in the litera-
ture. This makes the comparison of their performance
less straightforward. Therefore, in the current Letter, we
provide a complete overview of the performance of dual
radiative heat engines achieved for various bandgaps, and
highlight the interests of each operating regime. In par-
ticular, we focus on the maximum achievable power and
efficiency, and derive analytical upper bounds for these
two quantities.

In the following, we assume that the dual engine oper-
ates in the far field. To maximise the achievable power
output, the emission of radiation is assumed to follow the
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modified Planck law. Furthermore, the bandgaps of the
two components are assumed to be equal, and the radia-
tion exchanged below the bandgap is neglected to obtain
an upper bound of the efficiency. Thus, the emitted pho-
ton flux density Ṅ and the related heat flux density q
can be expressed as

Ṅi =
1

4π2c2h̄3

∫ ∞

Eg

E2

exp
(

E−µi

kBTi

)
− 1

dE, (1a)

qi =
1

4π2c2h̄3

∫ ∞

Eg

E3

exp
(

E−µi

kBTi

)
− 1

dE, (1b)

where i relates to the emitting body (either “h” or “c”)
with bandgap energy Eg and temperature Ti. µi is the
chemical potential of the emitted radiation, which must
remain strictly smaller than Eg and is assumed to be re-
lated to the voltage Ui applied to the component through
µi = eUi [22, 23], e being the elementary charge. The
above integrals can be expressed analytically using poly-
logarithms [24], leading to

Ṅi =
(kBTi)

3

4π2c2h̄3

(
e2g,i Li1(e

−xi) + 2eg,i Li2(e
−xi)

+ 2Li3(e
−xi)

)
,

(2a)

qi =
(kBTi)

4

4π2c2h̄3

(
e3g,i Li1(e

−xi) + 3e2g,i Li2(e
−xi)

+ 6eg,i Li3(e
−xi) + 6Li4(e

−xi)
)
,

(2b)

where Lin is the n-th order polylogarithm, eg,i =
Eg/kBTi and xi = (Eg − µi)/kBTi. Finally, to obtain
an upper bound of the dual engine performance, we as-
sume that any active component operates at the radiative
limit (i.e. without any non-radiative losses). The electri-
cal power generated by a component i facing a component
j is then

Pi = Ui · e(Ṅj − Ṅi) = µi(Ṅj − Ṅi). (3)

The total power output is therefore

P = (µc − µh)(Ṅh − Ṅc). (4)

Since qsource = qh − qc + Ph, the overall heat engine effi-
ciency is

η =
P

qsource
=

(µc − µh)(Ṅh − Ṅc)

qh − qc − µh(Ṅh − Ṅc)
. (5)

Using these constitutive equations, we start by study-
ing how the power output of the dual engine varies in the
(µh,µc) plane. The results obtained considering Th = 600
K and Eg = 5kBTh are illustrated in Fig. 2a. The dual
system can also operate as a heat pump [25, 26], and we
indicate in a blue colour scale the cooling power. Note
that such high cooling powers can only be achieved be-
cause below-bandgap radiation is neglected [27].
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FIG. 2: (a) Performance of dual radiative systems
operating as heat engines or heat pumps, at the
radiative limit and for Eg = 5kBTh = 0.26 eV. (b)

Operating regions of dual radiative systems in the limit
of an infinite bandgap.

For the bandgap selected, the dual system is able to
operate both as a heat engine and a heat pump in three of
the four quadrants: namely, the TPX quadrant (upper-
right), the TRPV quadrant (upper-left) but also the
“TRNEL” quadrant, in which a cold negative electro-
luminescent (NEL) diode consumes electrical power to
limit the radiation sent to the hot facing TR cell. To the
best of our knowledge, the TRNEL device has never been
mentioned in literature. Globally, both the power output
and the cooling power increases with µc, while P also in-
creases with µh: the maximum power point (MPP) is
therefore located in the TPX quadrant, while the max-
imum cooling power is reached in TRPV operation for
µc → Eg. Despite µc → Eg, the cooling power converges
towards a constant value, as demonstrated in [28]. Addi-
tionally, note that for low Eg, the TPX device becomes
unable to perform cooling (see Section II of Supp. Mat.
[10]).
Note how the dual system does not switch directly from



3

heat engine to heat pump operation as µ varies. Indeed,
there is a narrow region in-between where the system is
neither able to generate electrical power nor to cool the
cold source. This gap can especially be observed when
Eg − µh becomes lower than kBTh, but globally narrows
down as the bandgap increases: in the limit of infinite
bandgaps, the two operating regions become adjacent as
qh = qc and Ṅh = Ṅc are equivalent. This is schematised
in Fig. 2b. In this situation, the term related to the
lowest-order polylogarithm dominates in the expressions
provided in Eq. (2). By linearising Li1, we obtain that
the transition from one region to the other - which corre-
sponds to open-circuit conditions - occurs approximately
for

µc =
Tc

Th
µh +

(
1− Tc

Th

)
Eg + kBTc ln

(
Th

Tc

)
, (6)

this linearised expression being a very good approxima-
tion as long as Eg − µi ≫ kBTi. The other side of the
power production region is simply delimited by the con-
dition µh = µc. These two expressions have already been
mentioned for TPX devices in [20].

To quantify and compare the performance of TPX,
TRPV and TRNEL devices, we provide in Fig. 3 the
η−P plots obtained by varying both µh and µc, consid-
ering three different bandgaps and a heat source temper-
ature of 600 K. For each device, the shaded area corre-
sponds to achievable operation, while the full line is the
envelope of this area. Looking at the three cases consid-
ered, it is first interesting to notice that while the shape of
the admissible η−P area changes significantly when con-
sidering each engine individually, it remains mostly un-
changed with varying bandgaps for the full dual radiative
engine. For any of the bandgaps considered, the efficiency
at maximum power remains mostly constant (between
28% and 34% of the Carnot efficiency ηC = 1 − Tc/Th),
while the maximum efficiency is always ηC and is reached
at zero power.

If we now compare the different engines, TRNEL ap-
pears to be the optimal choice to maximise the efficiency,
being always able to reach the Carnot efficiency. Note
that this is true only because it operates at the radiative
limit: in Section III of Supp. Mat. [10], we analyse the
impact of non-radiative losses on performance by consid-
ering a spectrally flat quantum efficiency, and pinpoint
that the interest of TRNEL operation vanishes when the
quantum efficiency goes significantly below unity. Even
at the radiative limit, the advantage of TRNEL operation
shrinks for large bandgap: as Eg → ∞, all radiative en-
gines are able to approach the Carnot efficiency in open-
circuit conditions. This has already been demonstrated
for TR [6, 7] and TPV [29], but can in fact be shown for
any radiative engine. In the limit of an infinite bandgap
(qh − qc)/(Ṅh − Ṅc) → Eg, leading η to be expressed as
(µc−µh)/(Eg−µh). Using Eq. (6), and keeping in mind
that Eg − µh ≫ kBTh, we obtain that the efficiency in

FIG. 3: η − P plots of dual radiative engines at the
radiative limit, for Th = 600 K and for various

bandgaps.

open-circuit conditions equals ηC.

In contrast, to maximise the power output, TPX is
almost always the best candidate, TRPV becoming op-
timal only for very low bandgap energies (here, for Eg <
kBTh ≈ 0.05 eV) which are not achievable physically.
This remains true for lower or higher heat source tem-
peratures (see Section IV of Supp. Mat. [10]). TPX
devices generally outperform other radiative engines in
terms of power output because the hot emitter operates
as an LED: it is therefore able to largely enhance its
emission by electroluminescence, increasing consequently
the various energy flows in the system. For high enough
bandgaps, this can even cause Pmax to exceed σT 4

h (see
Fig. 3c), which is physically impossible for single radia-
tive engines.

While TRNEL devices allow maximising efficiency and
TPX devices power, TRPV systems can in some condi-
tions provide interesting trade-offs between power and
efficiency (see Fig. 3b). However, this can only be ob-
served for low bandgaps (a few kBTh at most) which are
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hardly achievable for the heat source temperature con-
sidered.

The study of η − P plots directly highlights that the
maximum efficiency of dual radiative engines is always
the Carnot efficiency, reached for zero power output. Re-
garding the MPP, it was observed that Pmax increases sig-
nificantly with Eg while ηMPP varies only slowly, but no
analytical expressions of these quantities have yet been
formulated. Therefore, in the following, we focus on the
analytical derivation of Pmax and ηMPP. To do so, we
consider once again that Eg → ∞, since this allows reach-
ing the largest possible power output (see Section V of
Supp. Mat. [10]). By doing so, the Li1 term domi-
nates the expressions provided in Eq. (2). Using that
µc−µh = xhkBTh−xckBTc, and defining Xi as exp(−xi),
the power output can be expressed as:

P =
E2

gk
2
BT

2
h

4π2c2h̄3

(
ln(Xh)−

Tc

Th
ln(Xc)

)
×

(
ln(1−Xh)−

Tc

Th
ln(1−Xc)

)
,

(7)

since Li1(x) = ln(1 − x). By using the symmetry of
this expression with respect to Xh and Xc, one can show
that P reaches its maximum for Xh = Xc = 1/2, thus
for µi = Eg − ln(2)kBTi (see Section VI of Supp. Mat.
[10]). Consequently, the maximum power output is

Pmax =
1

h̄

(
ln(2)EgkB(Th − Tc)

2πch̄

)2

, (8)

and varies quadratically with both the bandgap energy
and the temperature difference. Such variations were al-
ready pointed out in [28], although without a complete
closed-form expression. Since Eg ≫ kBTi, both chemical
potentials are greater than 0 and the maximum is reached
in TPX regime, consistently with the results from Fig. 3.

To derive a closed-form expression of the efficiency at
maximum power, we use that xh,MPP = xc,MPP = ln(2)
to obtain (µc,MPP − µh,MPP)/(Eg − µh,MPP) = ηC. Di-
viding both the numerator and the denominator of Eq.
(5) by (Ṅh − Ṅc)(Eg − µh), one gets

ηMPP =
ηC

1 +
(

1
ρ − 1

)
1

ln(2)
Eg

kBTh

, (9)

where ρ = Eg(Ṅh − Ṅc)/(qh − qc) corresponds to the
fraction of radiative energy being useful to optoelectronic
conversion. To express it, both Li1 and Li2 terms are
necessary. One obtains
(
1

ρ
− 1

)
1

ln(2)

Eg

kBTh
∼

Eg→∞
(2−ηC)

1

ln(2)

Li2(1/2)

Li1(1/2)
. (10)

The polylogarithmic terms having closed-form expres-
sions for x = 1/2, the efficiency at maximum power ob-
tained as Eg → ∞ is

ηMPP,Eg→∞ =
ηC

1 + (2− ηC)χ
, (11)

FIG. 4: Variation of the efficiency at maximum power
with the heat source temperature. For simplicity, only

the TPX quadrant has been considered.

χ being a constant equal to 1
2

(
1
6

(
π

ln(2)

)2

− 1

)
≈ 1.21.

The temperature variation of ηMPP,Eg→∞ is provided in
Fig. 4 (black line), and matches well the numerical re-
sults obtained for bandgaps larger than 100kBTh. It also
gives a good estimate of the efficiency obtained for stan-
dard bandgaps, as long as Eg ≫ kBTh: for Th = 600
K, ηMPP,Eg→∞ = 17.7% while ηMPP,1 eV =17.1% and
ηMPP,0.52 eV = 16.6%.
To better understand how efficient dual radiative en-

gines are at maximum power, one can compare Eq. (11)
with classical upper bounds for ηMPP. We choose to per-
form the comparison with the Novikov-Curzon-Ahlborn
[30, 31] efficiency ηNCA = 1−

√
Tc/Th and the Schmiedl-

Seifert [32] efficiency ηSS = 2ηC/(4 − ηC), which were
found to be efficiency bounds for endoreversible and ex-
oreversible thermoelectric generators respectively [33].
For the temperatures previously considered, both effi-
ciencies are close to 29%, hence 11 percent points higher
than ηMPP,Eg→∞. This significant difference, which high-
lights the presence of additional losses in radiative en-
gines, can be attributed to thermalisation losses - i.e.,
to the fraction of radiative energy exchanged which is
useless to optoelectronic conversion. To prove this, we
now consider that the radiation is quasi-monochromatic
around Eg, which makes the ratio ρ equal to 1. In this
scenario, µi,MPP is found to tend towards Eg (see Section
VII of Supp. Mat. [10]). Then, the Bose-Einstein distri-
butions can be simplified using that [exp(x)−1]−1 ∼ x−1

around 0. Setting any of the two partial derivatives of P
with respect to µi to zero leads to

ηMPP,h̄ω=Eg = 1−
√

Tc

Th
, (12)

exactly the Novikov-Curzon-Ahlborn efficiency. δE being
the radiation spectral bandwidth, the maximum power
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FIG. 5: Variation of the maximum power and related
efficiency for varying spectral bandwidth, considering
Th = 600 K. For simplicity, only the TPX quadrant has

been considered.

output is then

Pmax =
1

h̄

(
Eg

√
kB(

√
Th −√

Tc)

2πch̄

)2

δE, (13)

an expression similar to Eq. (8). Since P goes to zero
as δE → 0, there is a trade-off between power and effi-
ciency as the bandwidth varies, as illustrated in Fig. 5:
to achieve non-zero output power, the efficiency must fall
below the usual bounds. It is noteworthy that the effi-
ciency starts to decrease for bandwidths as low as few
meV (corresponding to a quality factor Q = Eg/δE close
to 100 for Eg = 0.52 eV), while reaching the broadband
limit for a bandwidth of few tenths of eV (i.e. for Q ≈ 1
considering Eg = 0.52 eV). If the efficiency at maximum
power is too low for a given application, two main lever-
ages are thus available to increase it, although at the
expense of power: decrease the radiation bandwidth, or
change µh and µc to move in the broadband η − P plots
provided in Fig. 3, which can allow exceeding the afore-
mentioned bounds [4]. The interest of each of these lever-
ages depends on the bandgap, and on how far the system
operates from the radiative limit. In some cases, spec-
tral filtering can allow extending the region of achievable
operating conditions, limiting the power loss undergone
when high efficiency is required (see Section VIII of Supp.
Mat [10]).

In conclusion, we have studied the power output and
efficiency achievable by dual radiative heat engines, es-
pecially when they operate at the radiative limit. A uni-
fied view allows shining light on their similarities and re-
spective merits. In particular, TRNEL devices are found
to systematically reach Carnot efficiency, while TPX de-
vices are almost always the best dual engines in terms
of power output, and offer the broadest range of oper-
ating conditions of all dual engines for bandgaps over a

few kBTh. We have analytically derived an upper bound
for the maximum power and related efficiency, the lat-
ter mostly lying between 30% and 40% of ηC and being
several percent points below usual efficiency bounds due
to thermalisation losses (11 points below for Th = 600
K). Interestingly, spectral filtering can mitigate part of
the power loss when high efficiencies are targeted. In
practice, below-bandgap radiation, more rigorous non-
radiative losses and resistive losses shall be included,
as well as thermal resistance effects at the thermostats
which reduce the operating temperature difference Th−Tc

[23]. In addition, it would be worth investigating how
the performance of such engines changes in the near field,
where radiative emission exceeds the modified Planck law
[19, 20, 23].
This work has received funding from the European

Union’s Horizon 2020 research and innovation pro-
gramme under Grant Agreement No. 951976 (TPX-
Power project). The authors thank T. Châtelet, P.
Kivisaari, O. Merchiers, J. Oksanen and J. van Gastel.

[1] T. Burger, C. Sempere, B. Roy-Layinde, and A. Lenert,
Present Efficiencies and Future Opportunities in Ther-
mophotovoltaics, Joule 4, 1660 (2020).

[2] A. LaPotin, K. L. Schulte, M. A. Steiner, K. Buznitsky,
C. C. Kelsall, D. J. Friedman, E. J. Tervo, R. M. France,
M. R. Young, A. Rohskopf, S. Verma, E. N. Wang, and
A. Henry, Thermophotovoltaic efficiency of 40%, Nature
604, 287 (2022).

[3] E. J. Tervo, R. M. France, D. J. Friedman, M. K. Aru-
lanandam, R. R. King, T. C. Narayan, C. Luciano, D. P.
Nizamian, B. A. Johnson, A. R. Young, L. Y. Kuritzky,
E. E. Perl, M. Limpinsel, B. M. Kayes, A. J. Ponec,
D. M. Bierman, J. A. Briggs, and M. A. Steiner, Effi-
cient and scalable GaInAs thermophotovoltaic devices,
Joule 6, 2566 (2022).

[4] M. Giteau, M. F. Picardi, and G. T. Papadakis, Thermo-
dynamic performance bounds for radiative heat engines,
Physical Review Applied 20, L061003 (2023).

[5] A. Datas, A. López-Ceballos, E. López, A. Ramos, and
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I. ELECTRICAL CHARACTERISTIC OF
OPTOELECTRONIC COMPONENTS

We provide in Figure S1 the current-voltage charac-
teristic of the various optoelectronic components consid-
ered for dual radiative engines [1]. Two of them produce
electrical power (TR and PV cells) while the two others
consume power (LEDs and NEL diodes).

NEL
PV

TR

LED

Tc

Th

U

J

FIG. S1: Schematic of current-voltage characteristics of
optoelectronic devices. U · J > 0 means that electrical

power is consumed.

II. PERFORMANCE OF DUAL ENGINES FOR
LOW BANDGAPS

We provide in Fig. S2 the variation of electrical power
output and cooling power as a function of both chemi-
cal potentials, this time for Eg = kBTh. In comparison
to the results obtained for larger bandgaps, the gap be-
tween the heat engine and heat pump operating regions
is larger. The change is particularly visible in the TPX
quadrant, since then Eg − µi becomes lower than kBTi.
In this quadrant, the device is almost always capable of
operating as a heat engine as long as µc ≥ µh. Con-
sequently, TPX devices are not able to operate as heat
pumps for such low bandgaps.

III. IMPACT OF NON-RADIATIVE LOSSES ON
η − P CHARACTERISTICS

The results presented in the main article are obtained
at the radiative limit, and therefore provide an upper

(a)

(b)

FIG. S2: (a) Performance of dual radiative systems
operating as heat engines or heat pumps, at the

radiative limit and for Eg = kBTh = 52 meV. (b) Zoom
on the µc = 0 scenario.

bound for dual radiative engines’ performance. Obvi-
ously, if non-radiative losses are included, performance
will be worsened: we aim at giving here some first in-
sights about the impact of such losses. To do so, we
manually set the quantum efficiency (QE), defined as the
fraction of recombinations being radiative, to 0.9 for both
components of the dual engine. This means that 10% of
the total recombination rate can be attributed to non-
radiative losses. Since the non-radiative generation rate
must balance the non-radiative generation rate at equi-
librium, we get a new expression of the power generated
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by an optoelectronic component [2]:

Pi = µi

(
Ṅj − Ṅi −

1−QE

QE

(
Ṅi − Ṅi(µi = 0)

))
. (1)

For a 600 K heat source temperature, the use of this
expression leads to the η − P plots illustrated in Fig.
S3. Several major differences appear in comparison to
the results obtained at the radiative limit. First, TR-
NEL devices have significantly lost interest, since they
are no longer able to reach Carnot efficiency. Worse,
their envelope is now within that of TRPV devices for
both bandgaps considered. Therefore, TRNEL systems
have interest only when operating close enough to the
radiative limit. Second, the maximum efficiency is now
highly dependent on the bandgap: being only 40% of
Carnot efficiency for Eg = kBTh, it goes up to 80% of ηC
for Eg = 10kBTh. Last, the power output variation with
the bandgap is way weaker; in fact, as long as QE < 1,
there is an optimal bandgap that allows maximising the
power output [3] (page 61).

Additionally, including non-radiative losses causes a
mismatch between the currents Jh and Jc of the two op-
toelectronic components. Since voltages are mismatched
too, the two components cannot be directly bound elec-
trically if both have the same area, and additional elec-
tronics is necessary to make the engine work. Otherwise,
it is possible to design engines with components with
mismatched areas [4] or bandgaps [5] to make them self-
sustaining.

IV. IMPACT OF HEAT SOURCE
TEMPERATURE ON η − P CHARACTERISTICS

In Fig. S4 and S5 are provided η − P plots obtained
at the radiative limit, but respectively for a 400 K and
1200 K heat source temperature. The conclusion drawn
for Th = 600 K remains valid in these scenarios. We can
still notice two slight differences. First, the normalised
power output achieved becomes larger as Th increases.
Considering Eg = 10kBTh for instance, Pmax/σT

4
h equals

approximately 0.6 for Th = 400 K, but goes up to 2.4 for
Th = 600 K and exceeds 5 for Th = 1200 K. Second, the
interest of TRPV devices rises with temperature, more
and more of the total envelope corresponding to that of
the TRPV device if the bandgap stays moderate. For
Th = 1200 K and Eg = kBTh ≈ 0.1 eV, TRPV gives
access to interesting trade-offs between power and effi-
ciency. However, note that such high temperatures can
hardly be withstood by optoelectronic components, and
therefore limits TRPV interest.

FIG. S3: η − P plots obtained for dual radiative
engines, for Th = 600 K and for various bandgaps. A

quantum efficiency of 0.9 is considered.

V. VARIATION OF MAXIMUM POWER AND
RELATED EFFICIENCY WITH BANDGAP

We provide in Fig. S6 the variations of the maxi-
mum power and related efficiency as a function of the
bandgap, respectively for the complete dual engine (thick
black line) and for each individual engine. For a heat
source temperature of 600 K, the dual engine MPP
moves from the TRPV quadrant for low bandgaps to
the TPX quadrant for higher bandgaps. In this case,
the transition between the two quadrants occurs around
Eg/kBTh = 0.7. Dual engines become especially attrac-
tive when Eg > kBTh ≈ 0.05 eV, their power output
increasing with Eg and being already 50% larger than
that of single engines for Eg = 1.9kBTh. In practice,
this condition is satisfied by any realistic bandgap at the
temperature considered.

Note how, when TPX or TRPV engines do not max-
imise the power output, they operate as TPV devices.
This is what causes the sudden change in slope observ-
able in panel (b): around Eg/kBTh = 0.7, there is for
both devices an abrupt change in the direction of dis-
placement of the MPP in (µh, µc) coordinates, from that
of the complete dual engine to that of a TPV device (or
vice-versa).

One can also observe that optimising TRNEL devices
for electrical power production simply means operating
as a TR device. Moreover, in the limit of zero bandgap,
TR operation becomes optimal: this is because the TR-
NEL quadrant is the only one available since µ < Eg → 0.
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FIG. S4: η − P plots obtained for dual radiative engines
at the radiative limit, for Th = 400 K and for various

bandgaps.

VI. DETERMINATION OF THE CHEMICAL
POTENTIALS AT MAXIMUM POWER

The goal is to determine the couple (Xh, Xc) which
allows maximising P :

P =
E2

gk
2
BT

2
h

4π2c2h̄3

(
ln(Xh)−

Tc

Th
ln(Xc)

)
×

(
ln(1−Xh)−

Tc

Th
ln(1−Xc)

)
.

(2)

The first thing to verify is whether the maximum power
is reached inside the domain (i.e. for 0 < Xi < 1) or at
the boundary. For instance, if Xh goes to 0, it gives

P ∼ −E2
gk

2
BT

2
h

4π2c2h̄3 ln(Xh) ln(1−Xc)
Tc

Th
→ −∞, (3)

and the maximum power is therefore not reached at this
boundary (the power being negative). A similar treat-
ment can be done at the three other boundaries to ensure

FIG. S5: η − P plots obtained for dual radiative engines
at the radiative limit, for Th = 1200 K and for various

bandgaps.

that the maximum power point is indeed located inside
the domain. We should then find the couple (Xh, Xc)
which makes both partial derivatives equal to zero. If the
couple found is unique, it is the maximum power point
since P goes to −∞ at the boundaries (which means that
a maximum power point must exist).
Setting both partial derivatives of P with respect to

Xi to zero, we get

ln(1−Xh)− ln(1−Xc)
Tc

Th

ln(Xh)− ln(Xc)
Tc

Th

=
Xh

1−Xh
, (4a)

=
Xc

1−Xc
. (4b)

Note that this holds only if ln(Xh) − ln(Xc)
Tc

Th
is non-

zero at the maximum power point. If the former term
was equal to zero, then ln(1−Xh)− ln(1−Xc)

Tc

Th
should

also be zero to satisfy that partial derivatives are equal

to zero, which would lead to 1−X
Tc/Th
c = (1−Xc)

Tc/Th .
This equation being satisfied only for Xc equal to 0 or 1
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FIG. S6: Variation of (a) the maximum power, (b) the
efficiency at maximum power, for the different radiative

engines considering Th = 600 K.

(which are not inside the domain), ln(Xh)− ln(Xc)
Tc

Th
is

therefore non-zero at the maximum power point.

Combining the two expressions given in Eq. (4), we
easily get that Xh = Xc. Writing this common value X,
we obtain

P =
1

h̄

(
EgkB(Th − Tc)

2πch̄

)2

ln(X) ln(1−X). (5)

Notice how P is symmetric around the axis X = 1/2
(since P (X) = P (1 − X)): at (Xh = 1/2, Xc = 1/2),
both partial derivatives therefore equal zero. In fact, this
couple is the only possible solution, and corresponds thus
to the maximum power point.

VII. IMPACT OF THE CHEMICAL
POTENTIAL OF QUASI-MONOCHROMATIC

RADIATION

In the article, to derive an expression of the efficiency
at maximum power in the case of quasi-monochromatic
radiation exchanged, we state that Eg − µi ≪ kBTi. To
verify this, we show in Fig. S7 the variation of power
output with µh for Eg = 1 eV, considering only the TPX
quadrant. The power output associated to each µh corre-
sponds to the maximum achievable with the whole range
of µc available. We observe that Eg − µh,MPP ≪ kBTc:
since Th > Tc, therefore Eg−µh,MPP ≪ kBTh. Moreover,
µc ≥ µh, and thus Eg − µc,MPP ≪ kBTc.

FIG. S7: Variation of the power output with the LED
chemical potential considering quasi-monochromatic
radiation exchanged, for Eg = 1 eV and for two heat
source temperatures. In this case, only the TPX

quadrant is considered.

VIII. MODIFICATION OF THE ACHIEVABLE
OPERATING CONDITIONS UNDER SPECTRAL

FILTERING

To study the impact of spectral filtering (i.e. of reduc-
ing the radiation bandwidth δE), we show in Fig. S8 how
the η−P envelope of dual engines vary with δE. In addi-
tion, the complete set of operating conditions achievable
by varying δE is represented by the grey area. Three dif-
ferent scenarios are considered to highlight the variability
of the influence of spectral filtering on the achievable op-
erating conditions.

The envelopes obtained at the radiative limit for a
bandgap of kBTh are shown in panel (a), the results be-
ing mostly similar to those obtained at Eg = 10kBTh. In
this scenario, filtering gives access to new operating con-
ditions in the high-efficiency region. For P/σT 4

h < 0.03,
this can allow increasing the efficiency by up to 10 per-
cent points. The effect is even stronger when decreasing
the quantum efficiency (QE) to 0.9 (see Section III for
more details on QE), as depicted in panel (b): an effi-
ciency increase of the order of 25 percent points can be
reached for P/σT 4

h = 0.03, and goes up to 45 percent
points for P/σT 4

h = 0.01. In this case, the MPP ob-
tained with filtered radiation can even move beyond the
envelope obtained in the broadband scenario. In other
words, spectral filtering can limit the power loss under-
gone in high-efficiency operation.

There are however cases where filtering has no signifi-
cant benefit. We provide one such example in panel (c),
obtained for QE = 0.9 and Eg = 10kBTh. Under such
conditions, reducing the bandwidth mostly make the en-
velope shrink, the only benefit being a small increase of
the efficiency achieved for powers close to zero. In such
scenarios, it is thus better to prevent filtering radiation.
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FIG. S8: Dual radiative engine η − P envelopes
obtained for varying spectral bandwidth δE.
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