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The thermal resistance between a nanostructure and a half-body is calculated in the framework of
particle-phonons physics. The current models approximate the nanostructure as a thermal bath. We
prove that the multireflections of heat carriers in the nanostructure significantly increase resistance,
in contradiction with former predictions. This increase depends on the shape of the nanostructure
and the heat carrier’s mean-free path only. We provide a general and simple expression for the
contact resistance and examine the specific cases of nanowires and nanoparticles. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2837833�

I. INTRODUCTION

The Fourier heat conduction model is not relevant on the
nanoscale because the involved dimensions are smaller or
comparable to the heat carrier’s mean-free path. Drastic de-
viations are encountered,1–3 and new approaches have to be
elaborated. Fourier law is unable to predict the heat flux in
cases where the size of the structure, the heat source, or the
thermal heterogeneities on the boundaries are on the order of
magnitude or smaller than the phonon mean-free path. Under
such conditions the heat transport is partially ballistic: heat
carriers rarely interact in the volume of interest.

We address the thermal resistance between a nanostruc-
ture and a half-body when the contact also has a small char-
acteristic length. The current model4 describing nanocontacts
introduces a correction to the case of a macrocontact. How-
ever, it still assumes Fourier heat conduction not only in the
half-body but also in the nanostructure. This is because the
contact size is considered smaller than the characteristic size
of the nanostructure. In this situation, phonons coming into
the nanostructure have a very low probability of coming
back to the contact. They thermalize in the nanostructure that
is therefore assumed as fully absorbing as a heat bath. This
situation is shown in Fig. 1�a�.

However, since a nanostructure is commonly defined by
a characteristic size between 10 and 500 nm, the contact
cross section has to be much smaller than 10–500 nm to
ensure the condition of a fully absorbing heat bath. Under
these constraints, phonon particle physics is not relevant any-
more because the wavelengths of the thermal phonons are of
the same order of magnitude as the contact size, making
wave effects, such as phonon diffraction, become significant.

For a nanosized structure, we believe that the particle-
phonon approximation can only provide information when
the contact dimension is on the same order of magnitude as
the structure dimension. Besides, the nanostructure also has a
characteristic dimension on the same order of magnitude as
the typical mean-free path in crystals. As illustrated in Fig.

1�b�, the consequence is that phonons are reflected on the
nanostructure surface and eventually return to the half-body:
the current model does not apply anymore.

The objective of our study is to understand and predict
the impact of phonon reflections on the thermal resistance.
Note that our approach is based on the analogy between
phonons and photons. A clear introduction on radiation prin-
ciples is provided by Ref. 5.

Our predictions reveal that this thermal resistance can be
enhanced several times compared to the ones of current de-
scriptions.

This objective is relevant to several applications such as
�i� nanocontacts between a low-dimensional structure �nano-
wire, nanotube, nanoparticle� and a surface;4 �ii� fabrication
processes such as nanolithography;6 �iii� any nano/
microscale thermal measurements based on contact probes;7,8

and �iv� interfacial thermal resistance where the solid-solid
micro/nanocontacts cause constrictions of the heat flux lines
in both materials.9,10

Section II presents the physical model that starts from
the current theory and proposes a general treatment of the
nanostructure/surface resistance. The framework is based on
the assumption that the transport regime in the half-body is
Fourier-type. Results of the calculations are reported and ex-
plained in the first part of Sec. III. In the second part of Sec.
III, we estimate the deviation due to the non-Fourier regime
in the half-body.

II. PHYSICAL MODEL

A. Nanocontact between two thermal baths

Our physical model is based on the work by Nikolic and
Allen.11 They proposed an analytical calculation of the elec-
trical resistance between two reservoirs. The two bodies are
linked by a circular constriction. We consider their model in
the framework of heat transfer where electron reservoirs are
replaced by thermal baths of phonons. Wexler12 proposed an
approximated calculation for approaching the exact solution.
This approximation is formulated as the sum of diffusive and
ballistic resistance.
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Maxwell theory13 applied to heat transfer yields the dif-
fusive resistance RM =1 / �Dk�, where k is the thermal con-
ductivity and D is the contact size. This resistance is the sum
of the resistances created by two thermal baths. They are due
to the constrictions of the heat flux lines in the vicinity of the
contact.

The ballistic resistance is proportional to the reverse of
the phonon heat flux through the contact cross section. How-
ever, predominant phonon scattering is due to the interaction
between phonons and the perimeter of the contact instead of
the interaction between phonons. The relevant scattering
length is now proportional to the contact size D. The contact
acts as a bottleneck. This ballistic resistance is known as the
Sharvin14 term in electronics and does not depend on
phonon-phonon scattering or mean-free path.

The resulting thermal resistance between two thermal
baths linked by a circular contact can finally be written as

RW =
1

kD
+

16

�CvD2 =
3

CvD
� 1

�
+

16

3�D
� . �1�

In this equation, � is the mean-free path, C and v are the
phonon’s volumetric capacity and average group velocity,
respectively. We have considered the Debye expression of
the thermal conductivity k=Cv� /3 to derive the right-hand
side �RHS� term. The RHS term includes a phonon mean-
free path as defined by the following Matthiessen rule:
�1 /�+16 /3�D�−1. When the contact size D is much larger
than the phonon-phonon mean-free path �, the resulting
mean-free path equals � and the Maxwell resistance is re-
trieved.

When factoring the mean-free path � in the denominator
of Eq. �1�, the dimensionless Knudsen number Kn=� /D ap-
pears as the key quantity to estimate the deviation to the
Maxwell resistance. It was proven11 that the large and small
Knudsen limits predicted by Eq. �1� accurately match the
analytical results. However, this expression presents a maxi-
mal deviation of 11% for Kn=1 when compared to the exact
solution.

Equation �1� implies deep consequences because the re-
sistance RW becomes independent of the mean-free path
when the Sharvin term is predominant. This happens as early
as when the Knudsen number Kn=� /D is larger than
3� /16=0.589. For instance, measuring the thermal conduc-
tivity of a sample with a contact probe on a characteristic
length smaller than the phonon-phonon mean-free path is not
feasible. The reason is that the thermal resistance of the
sample becomes independent of the mean-free path.

B. Nanocontact between a nanostructure
and a half-body

We aim at correcting Eq. �1� because it fails to describe
the case of a nanostructure/half-body contact. Fourier con-
duction does not capture the relevant physical mechanisms in
the nanostructure.

Figure 2 provides a schematic of the different regimes
that occur when the characteristic sizes of the structure L and
the contact D are varied. When L and D are large, the clas-
sical Maxwell resistance RM is relevant. When the structure
dimension L is larger than the mean-free path but D is
smaller than the mean-free path, the structure is assimilated
as a perfect phonon absorber and the Wexler formula �dotted
background� applies.

However, the Wexler formula is not adequate to describe
the case of nanostructures because the hypothesis of a perfect
phonon absorber implies that L�D. On the other hand, a
nanostructure is typically smaller than 500 nm, and the con-
tact size, in turn, has to be smaller than 10 nm. A wavelike
behavior of phonons is expected at such small dimensions
but it is not included in Wexler formula.

Our work focuses on the case where the characteristic
dimensions L, D, and � are on the same order of magnitude.
But the schematic of Fig. 2 also shows that our work does
not address the wavelike behavior of phonons such as pho-
non transmission �background with hatchings�. Recent works
have investigated this effect in the case of constrictions be-
tween nanospheres.15

FIG. 1. �a� Schematic of the situation where the contact cross section is very
small compared to the characteristic size of the nanostructure. The heat
carriers are trapped inside the structure and they are thermalized. Gray stars
represent a phonon-surface scattering event. The nanostructure can be as-
similated to a perfect phonon absorber or a thermal bath. But, the contact
size has to be much smaller than 500 nm in such a way that the particle
phonon physics does not apply anymore. �b� Schematic of the nanostructure/
half-body configuration. The characteristic dimensions of the contact cross
section D, of the nanostructure L, and of the phonon-phonon mean-free path
� are reported. D has to be larger than 10 nm for the particle phonon
physics to be applied. The nanostructure size L�500 nm is hence on the
same order of magnitude as D. The phonon mean-free path in dielectric and
semiconductor crystals is also of the order of a few tens of nanometers. In
this situation, multireflections occur and have to be taken into account.
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We next explain how to model the impact of the nano-
structure by correcting Eq. �1�.

C. Defining thermal resistance

The flux and the temperature difference between the
half-body and the nanostructure are sufficient to define the
thermal resistance. The thermal bath allows for definition of
the temperature T0 away from the aperture. But, the second
reference temperature is more difficult to identify. The tem-
peratures in the nanostructure and in the vicinity of the con-
tact are ill-defined quantities because nonequilibrium heat
transfer is involved. To define a second temperature refer-
ence, we assume that the nanostructure is coupled to an ex-
ternal thermal bath at temperature T1. In practical conditions,
the coupling can be radiative; it can be done by forced con-
vection or even by conduction through air, water, or solid
contact.

D. The contribution of the half-body

The heat transfer in the half-body is Fourier-type at re-
mote distances from the contact. The half of the Maxwell
resistance RF=RM /2=1 / �2Dk� then accounts for the con-
strictions of the heat flux lines in this region. Nearer to the
contact, a partially ballistic heat transfer is expected.

We already noted that the deviation from the Wexler
formula in Eq. �1� is due to this partially ballistic regime and
remains smaller than 11%. For a first approximation, we will
neglect the influence of this regime and propose a general

and simple expression that accounts for the nanostructure.
Later, in Sec. III B, we will provide a correction to the pre-
vious approximation.

E. Defining nonequilibrium effective temperatures in
the nanostructure

In the nano-object, an equilibrium phonon distribution at
T1 is superimposed to the incoming phonons at temperature
T0. Those heat carriers interact with themselves and with the
nanostructure surface but they undergo a low number of scat-
tering events: they cannot thermalize. The resulting phonon
distribution is hence characterized by a nonequilibrium or a
non-Fourier regime. This regime can be treated by calculat-
ing heat fluxes, but we introduce effective temperatures to
interpret the deviation to the thermodynamic temperature T1

used in the Wexler formula of Eq. �1�.
First, we define the temperature of emission T that is

related to the non-Fourier heat flux q according to the fol-
lowing expression:

q =
1

2�
�

�,�2�

g2����v��� cos ���f���d�d�

=
�

8�2v2�
�=0

�D �3

exp� ��

kBT
� − 1

d� =
�D

3 kB

24�2v2T , �2�

where kB is the Boltzmann constant, � represents the phonon
angular frequency, and �D is the Debye angular frequency. g
corresponds to the phonon density of states, which is ex-
pressed according to the Debye approximation, and the
group velocity is isotropic and frequency independent as
postulated by the same approximation. The index 2� refers
to the directions of 2� steradians. cos � indicates that the
velocity is projected on the direction perpendicular to the
surface, � being the angle between the phonon velocity and
the direction perpendicular to the surface.

Equation �2� is the general expression of a phonon heat
flux but here, f is the number of phonons coming from the
direction �, and f is not isotropic. This reveals the nonequi-
librium transport. As shown in Eq. �2�, we assume that f can
be related to an isotropic Bose-Einstein distribution includ-
ing an effective temperature T. This approximation is not that
crude because the variation of the quantity f along directions
remains small and the Bose-Einstein distribution is an aver-
age over directions of those variations. The temperature T is
set larger than the Debye temperature so that the flux is fi-
nally proportional to T.

In the contact cross section, Eq. �2� defines the emission
temperature TD

i related to the heat flux that is emitted from
the nanostructure toward the half-body. The superscript i re-
fers to an incident flux and the index D corresponds to the
contact surface SD.

Another type of effective temperature can also be calcu-
lated from the local energy density as follows:

FIG. 2. Schematic of the different regimes in the nanostructure/half-body
case. L and D are the nanostructure and contact sizes. � is the phonon
mean-free path and �max represents the wavelength of the predominant ther-
mal phonons. The Wexler formula �dotted background� or Eq. �1� is not
adequate to describe the thermal contact between a nanostructure and a
surface. The Wexler formula requires that L�D or L��. Our work treats
the nanostructure case in the frame of the phonon-particle physics �no pho-
non diffraction� including multireflections in the nanostructure.
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1

4�
�

�,�4�

g4������f���d�d�

=
�

4�2v3�
�=0

�D �3

exp� ��

kBT
� − 1

d� =
�D

3 kB

12�2v3T . �3�

Once again, the temperature T that can be compared to an
effective thermodynamic temperature defines an average
over directions of the phonon number f . The index 4� refers
to the directions of 4� steradians. Equation �3� allows for
derivation of the expression of the effective thermodynamic
temperature Ta in the contact cross section. Ta is estimated as
the algebraic average of the temperatures TD

i and T0 because
the f function is a Bose-Einstein distribution at a temperature
TD

i in the directions of one hemisphere and at a temperature
T0 in the directions of the other hemisphere.

TD
i and Ta refer to a heat flux and an energy, respectively.

Using those temperatures will allow us to calculate the de-
viation to the temperature T1 due to the non-Fourier regime.

F. Expression of the contact resistance

Our strategy is to correct the Sharvin resistance of the
contact and the resistance RF associated with one thermal
bath. When the nanostructure replaces the second thermal
bath, the temperature difference defining the net heat flux
through the contact is not �T1−T0� but �TD

i −T0�. Between the
contact and the thermal bath, the relevant temperature differ-
ence is not �T1−T0� /2 anymore but �Ta−T0�. We will show
that the resistance R defining the heat flux, with �T1−T0� as
reference, is obtained by the following relation:

q =
R

�T1 − T0�
=

RW

�TD
i − T0�

, �4�

where RW is the Wexler resistance defined in Eq. �1�. The
correction coefficients to the resistance RF and the Sharvin
resistances appear to be the same; this correcting coefficient
is the temperature ratio �T1−T0� / �TD

i −T0�.
We now provide an analytical expression of this ratio.

After a thorough derivation including the coupling with a
thermal bath at temperature T1 as well as the phonon-phonon
and surface scattering in the nanostructure �Appendix A�, we
express the ratio as follows:

TD
i − T0

T1 − T0
= 1 − 	 . �5�

The coefficient 	=
1D
2 /1−
11 introduces 
1i

= ��S1�−1���S1�,Si
e−r/�u ·dSid�, where the indexes 1 and D

�index i=1 or D� refer to the surfaces S1 and SD of the
nanostructure and of the contact, respectively. The scattering
is treated along paths having lengths described by the vari-
able r and the direction u. Those paths link the surface ele-
ment dSi to the surface element dS1. d� is the element of
solid angle.

The geometric-mean transmittance 
1i is the fraction of
the heat flux leaving surface 1 and reaching surface i after
several phonon-phonon scatterings. 	 is the fraction of the
heat flux leaving the nanostructure and carrying phonons at a

temperature T0. This term is proportional to the heat flux
leaving the surface SD toward the thermal bath. This flux is
proportional to 
1D /1−
11 as shown in Appendix A and is
attenuated by phonon-phonon scattering before reaching the
surface SD. This scattering is modeled by multiplying the
ratio 
1D /1−
11 by 
1D.

In the ballistic regime, i.e., when L�� and e−r/�=1, the
transmittance is equal to its upper limit, which is called con-
figuration factor �1i. The quantity �1i is defined when no
scattering occurs. It is equal to the flux leaving the surface S1

and reaching the surface Si divided by the total heat flux
leaving the surface S1. The heat flux balance yields to �11

+�1D=1 and finally 	=�1D when neglecting scattering. Note
that the geometric-mean transmittance 
1i and 	 can be com-
puted for any structure shape from commercial heat transfer
codes including semitransparent radiation.

The correction to the Sharvin term consists of replacing
T1 by the effective temperature TD

i , but the resistance RF is
also affected by the nanostructure. The correction for the
temperature difference defining the heat flux in the half-body
is derived as follows:

Ta − T0

�T1 + T0�/2 − T0
= 1 − 	 , �6�

which is the same as for the Sharvin term. Equation �6� arises
from the calculation of Ta as the algebraic average of TD

i and
T0 �Appendix A�,

Ta − T0

T1 − T0
=

1 − 	

2
. �7�

Finally, Eq. �1� can be generalized by dividing both the re-
sistance of one thermal bath and the Sharvin resistance by
1−	. This is Eq. �4�, and it can be expressed by normalizing
the contact resistance R by the resistance RF to yield

R

RF
=

1

1 − 	
�1 + � Kn� . �8�

The factor �=4D / �3RFSDk� is a nondimensioned figure ac-
counting for the shape of the contact: �=3.395 for the disk
of diameter D, �=0.59 for the square of edge D, and �
=2.24 for the line of width D. � is easily derived from a
classical heat conduction model. Note that Eq. �8� holds for
any shape of nanostructure and contact.

When considering different materials in the half-body
and in the nano-object, the second RHS term of Eq. �8�, i.e.,
� Kn, has to be divided by the phonon transmission coeffi-
cient from the half-body to the nanostructure. The 	 coeffi-
cient also has to include the phonon mean-free path of the
nanostructure, whereas RF depends on the phonon mean-free
path in the half-body.

A direct consequence of Eq. �8� is that the thermal resis-
tance is significantly enhanced when 	 goes to 1. Under
these circumstances, 
1D

2 +
11 also becomes 1, which corre-
sponds to the case of a ballistic regime in the nanostructure.
The contact resistance also becomes very large because the
nanostructure reflects all the phonons at temperature T0 back
to the half-body without absorbing their energy.
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III. RESULTS AND DISCUSSION

A. Multireflections in the nanostructure

To prove the significant weight of multireflections in the
nanostructure, we have calculated the ratio R /RF of Eq. �8�
in four cases: the strip, the wire perpendicular to the surface,
the wire lying on the surface, and the dot. Although a precise
numerical calculation of 	 is possible without technical
difficulty, we propose a direct estimation of 	 based on the
geometric-mean beam length approximation. In
this framework, the geometric-mean transmittance 
1i

is assumed to be equal to �1i�1−L1i /��, where L1i

=1 /S1�1i�S1
�Si

dS1 ·n1 dSi ·ni /� ·r is the geometric-mean
beam length.16 n1 and ni are the unit vectors with directions
parallel to the vector r that is joining both surface elements.
The previous expression of 
1i imposes L1i��, which is
confirmed in three of the four cases when Kn1.

The detailed derivations of the 	 coefficients are pro-
vided in Appendix B and reported in Table I.

We noted that the Knudsen number must be larger than 1
for the mean beam length approximation to be applied.
Therefore 
1i is well defined and remains larger than zero
except for the wire perpendicular to the surface, but the con-
figuration factor �1D goes to zero when the wire length in-
creases, and 
1i also reduces to zero in this case.

We sought to better understand the impact of the Knud-
sen number Kn=� /D. Therefore, we replaced 	 by its ex-
pression as a function of Kn and report the resistance devia-
tion �R /RW against the Knudsen number in Fig. 3�a�. �R
represents the difference between the corrected resistance R
of Eq. �8� and the one predicted by the Wexler approximation
in Eq. �1�.

In the case of the strip geometry, Fig. 3�a� reveals an
enhancement of the thermal resistance by a factor of 5 when
Kn=5. This difference remains significant even when Kn
=1 because the contact resistance is still twice larger than in
the half-body/half-body case. We envisioned a strong impact
of this result on the heat transfer of integrated circuits �ICs�.
The phonon mean-free path in silicon is equal to 100 nm and
the metal tracks of ICs have widths in the same range. The
geometry of a track is comparable to that of the strip pre-
sented above. The increased thermal resistance between the
track and the substrate might generate a significant tempera-
ture rise in and just below the track.

For Kn=5, the data obtained with the other geometries
also indicate a resistance enhancement of 12% �cube� and

27% �wire deposited on the surface�. The deviation for the
nanowire grown perpendicular to the surface remains negli-
gible as it behaves like a phonon absorber.

When the Knudsen number increases to higher values,
the resistance deviation for the strip reaches arbitrarily large

TABLE I. The correcting coefficient 	 is reported in as a function of the Knudsen number, the geometric-mean
beam length coefficient �=L1i /D, and the structure shape. The Knudsen number is defined by the ratio between
the phonon mean-free path and the characteristic length D. The strip has a thickness e that is equal to the width
D divided by 10. The wires have square sections of edge D. The cube has also an edge of length D.

Strip Wire�half body Wire	half body Cube

�, �� 0.175 3.467, 1.059 0.5588 0.6668

	 	= �1−� /Kn�2 	 

�1D

2 �1 − �/Kn�2

��/Kn
	 =

�1 − �/Kn�2

9 − 6�1 − �/Kn�
	 =

�1 − �/Kn�2

25 − 20�1 − �/Kn�

FIG. 3. �a� Difference between the thermal resistance R of Eq. �7� and the
Wexler resistance RW of Eq. �1� divided by the resistance RW as a function of
the Knudsen number. The partially ballistic regime in the half-body is ne-
glected. The cases of the strip structure, the wire of square section, the wire,
and the cube are reported. �b� Evolution of the shape factor 	=�R /R as a
function of the Knudsen number for four different structures described in
�a�.
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values. The deviation reaches an asymptotic value of 50%
for the horizontal nanowire and of 25% for the cube. These
figures are predicted by the ballistic limit of the ratio
�R /RW=	 / �1−	�=�1D / �1−�1D�. In this limit, �R /RW only
depends on the surface ratio S1 /SD according to the expres-
sion �R /RW=1 / ��S1 /SD�−1� because a trivial derivation
yields �1D=SD /S1.16 The physical meaning of this regime is
that the larger the surface S1, the smaller the probability for a
phonon to leave the nanostructure. The nano-object then be-
comes a perfect phonon absorber and the deviation �R de-
creases to zero.

Calculating the resistance ratio �R /R leads to the coef-
ficient 	. This point precisely reveals the physical meaning
of 	, which clearly appears here as the relative deviation of
the resistance compared to the Wexler prediction. In Fig.
3�b�, 	=�R /R is reported against the Knudsen number. The
increase of this last resistance ratio is smaller than the one of
�R /RW because R increases more rapidly with the Knudsen
number than RW.

B. Partially ballistic regime in the thermal bath

Previous work11 predicted an 11% deviation of the resis-
tance derived from the Wexler expression of Eq. �7� when
compared to the exact thermal resistance. The reason is that
the Wexler formula is an approximated Matthiessen rule de-
scribing the partially ballistic heat transfer in the half-body.
Finding the general and exact solution of the nanoparticle/
half-body thermal resistance is an unfeasible task, at least if
a rather simple expression is targeted. Here, we aim to prove
that this deviation between the Matthiessen solution and the
exact one remains constant whatever the 	 value is. We will
show that the ratio between the exact resistance and the cor-
rected resistance of Eq. �8� does not depend on the 	 coeffi-
cient. Our strategy consists of deriving a linear dependence
between the heat flux in the contact cross section and the
temperature difference TD

i −T0.
The proof is based on the ballistic diffusive model,16

which allows for solving the Boltzmann transport equation
�BTE�. This model is analogous to the modified differential
approximation for the radiative transfer equation.5 The deri-
vation of this model starts with the Boltzmann equation un-
der the relaxation time approximation,

� f

�t
+ v · �rf = −

f − f0



, �9�

where f0 is the equilibrium number of phonons and 
 the
average phonon relaxation time. The ballistic-diffusive ap-
proximation consists of dividing the distribution function
into two parts, f�r ,u�= fm�r ,u�+ fb�r ,u�. fb�r ,u� represents
the fraction of heat carriers that have been emitted from the
boundaries along the direction defined by u and arriving at r.
fm�r ,u� represents the heat carrier’s density in the vicinity of
position r arriving from the same direction u. The local heat
flux q is the sum of the ballistic and medium fluxes qb and
qm, respectively. fb�r ,u� is a solution of the Boltzmann equa-
tion when f0�r ,u�=0,

fb�r,u� = fw�r − r0� · exp�−
r

�
� . �10�

fw is the carrier’s density emitted from the boundary point r0

along the direction u. The BTE written for fm combined with
the energy balance equation yields16

��qb − k � Tm� = 0. �11�

The ballistic heat flux can be computed separately by com-
bining Eqs. �2� and �10�. The divergence of the ballistic
fluxes �qb can be derived from Eq. �10� and inserted as a
source term in Eq. �11�. From this point of view, Eq. �11�
remains a classical heat conduction equation with volumetric
sources prescribed by �qb and with a temperature Ta as
boundary condition over the contact cross section. Calculat-
ing the heat flux qb from Eq. �2� requires setting the tem-
perature TD

i as a boundary condition on the contact cross
section. Note that the coupling between the ballistic-diffusive
calculation in the half-body and the nanostructure is
achieved by applying the above-mentioned boundary condi-
tions.

We emphasize that the ballistic-diffusive equations pro-
vide the correct solutions at the ballistic and diffusive limits
of high and low Knudsen values.17 This statement was con-
firmed by numerical studies in the 1D case.15 The 1D analy-
sis also reveals a maximum inaccuracy of 1.4% when Kn
=1.

We now show that the ballistic heat flux qb is propor-
tional to the temperature difference TD

i −T0. To demonstrate
this dependence, we decompose the expression Eq. �2� of the
ballistic heat flux into contributions corresponding to differ-
ent solid angles as follows:

qb�r� =
1

4�
�

�

gFS���v���d���fb�r,T0� · I��4��

− fb�r,T0� · I��D� + fb�r,TD
i � · I��D�� . �12�

We have introduced the quantity I���
=��,���e−r�/� cos � sin �d�d�, where r� is the distance be-
tween the point with coordinates defined by the position vec-
tor r and the boundary point defined by the direction � and
the previous position. � denotes the azimuth angle.

The local thermal equilibrium leads to the equality
fw�T0�I��4��=0 because the sum of the heat fluxes coming
from all directions in an isothermal cavity should cancel.
Following Eq. �2�, the two remaining RHS terms in Eq. �12�
can be expressed as linearly dependent to the temperatures
T0 and TD

i , respectively. The ballistic heat flux qb finally
arises as the product between a geometric term and a term
including the energy as follows: qb�r�� �TD

i −T0�I��D�. The
proportionality between the heat flux qb�r� and the tempera-
ture difference TD

i −T0 is hence verified.
In addition, the local thermal equilibrium implies that

div qm�r�=−div qb�r�. The divergence operator only acts on
the I��D� function in such a way that qm is also proportional
to TD

i −T0. As a consequence, the resulting heat flux q=qb

+qm is proportional to the temperature difference TD
i −T0.

When introducing this last temperature difference in the
expression of the exact thermal resistance R�, it turns out that
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R� =
�T1 − T0�

�
SD

�qb�r� + qm�r��dSD

�
�T1 − T0�
�TD

i − T0�
�

1

�1 − 	�
.

�13�

To numerically show this dependence, we have solved Eq.
�11� when the contact cross section is a disk of diameter D.
The disk heats a half-body which is modeled by a cylinder
with boundaries at a temperature T0=300 K. System sym-
metry around the cylinder axis is assumed. We set the cylin-
der height and radius to Lx=6 �m and Ly =3 �m, respec-
tively. The temperature field is calculated based on a finite
volumes method currently used to solve conventional Fourier
conduction problems. We choose to set up a regular 100
�100 grid of ring elements with square sections. To preserve
the approximation of a semi-infinite body, the Knudsen num-
ber Kn=� /D is defined between 0.1 and 2.5. The value of D
is tuned to provide a rather continuous set of resistances
versus Kn. The ratio between the mesh size and the diameter
D varies, and the numerical uncertainties do too. We there-
fore acknowledge a numerical accuracy of 5–10% by com-
puting the same Knudsen value with a different set of param-
eters. The thermal resistance RF in the diffusive limit is
obtained from the heat flux qm computed when the ballistic
heat flux is removed in Eq. �11�.

The ratio R� /RF versus Kn is reported in Fig. 4 for two
values of 	. The main point is that the quantity �R� /R�
� �1−	� is clearly not 	 dependent. This result provides a
numerical proof of Eq. �13�. Computing other cases with
different values of 	 would basically confirm the dependence
of the quantity R� /RF on the coefficient 1 / �1−	�.

To sum up, the exact solution for the thermal resistance
R� has the same dependence on 	 as the solution of Eq. �8�.
The knowledge of the resistance R��	=0�, i.e., in the ap-
proximation of two interacting thermal baths, yields the ex-
act resistance for the nanostructure configuration and for any
values of 	 according to the expression R��	�=R��	=0� / �1
−	�.

A simple estimation of R��	� is the resistance denoted R
which is directly obtained from �R−RW� /R=	. This approxi-
mation is especially true for low or high Knudsen numbers.
In the vicinity of Kn=1, an 11% disagreement was found in
the case of the cylindrical contact. Finally, we can also infer
that the correction �R−RW� /R equals the ratio between the
contact cross section and the nanostructure surface at the
ballistic limit.

IV. CONCLUSIONS

In conclusion, we showed that the thermal resistance be-
tween a nanostructure and a half-body is augmented com-
pared to the predictions of the half-body/half-body model.
This deviation is mainly due to the multireflections of heat
carriers inside the nanostructure. This increase depends on
the Knudsen number and on the ratio between the nanostruc-
ture and the contact surfaces. This contribution is significant
when Kn2. In the vicinity of Kn=1, we showed that the
partially ballistic regime in the half-body also increases the
contact resistance. The cases of the nanowire, the nanopar-
ticle, and the thin strip were calculated. The deviation to the
current estimations reaches 500% at Kn=5 in the strip ge-
ometry. Temperature levels in metal tracks of integrate cir-
cuits might be strongly increased by this additional resis-
tance. Highlighted effects also affect the thermal control of
nanostructures, local probes, and nanofabrication processes.
We emphasize that the framework of our study is restricted
to the particle phonon physics that implies a contact size
larger than 10 nm at ambient.

APPENDIX A: DERIVATION OF THE � COEFFICIENT

The calculation of the 	 coefficient is derived from the
equations of the matrix of enclosure theory presented in Ref.
5. This theory is basically derived from the heat flux balance
on each surface. Considering an enclosure with N surfaces
bounding a uniform isothermal medium at temperature T1, it
provides the net heat fluxes qj on surfaces j based on the
following equation:

�
j=1

N ��kj

� j
−

� j

� j

kj�qj = �

j=1

N

��kj − 
kj�qj
b − akjqg, �A1�

where qg is the flux emitted by the phonon gas
and the geometric-mean transmittance, 
kj

= ��Sk�−1���Sk�,Sj
e−r/�u ·dS jd� is the transmittance, and akj

= ��Sk�−1���Sk�,Sj
�1−e−r/��u ·dS jd� is the absorbance. The

surfaces are assumed to be diffuse and the emission in the
medium is isotropic. � is the reflection coefficient and � j is
the ratio between the phonon flux emitted by the surface j
and the phonon flux emitted if the surface were a perfect
phonon emitter. The superscript b indicates the equilibrium
�or blackbody� emission. We first calculate the temperature
T1

l corresponding to the heat flux leaving the surface 1. De-
veloping Eq. �A1� when k=1 yields

FIG. 4. The ratio R /RF� �1−	� vs the Knudsen number when 	=0 and 	
=1 /2. The multireflections in the nanostructure and its shape are taken into
account in the factor 	. The black circles correspond to the mean of all
calculated values for a given Knudsen number. The dashed line is a poly-
nomial interpolation.
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� 1

�1
−

�1

�1

11�q1 −

�D

�D

1DqD

= − qg�a11 + a1D� + �1 − 
11�q1
b − 
1DqD

b . �A2�

�D=0 because the half-body absorbs all the phonons crossing
the contact toward its direction. The surface 1 is assumed to
be a nonemitting surface and q1

b=0. The flux q1
l leaving the

surface 1 is related to the net heat flux q1 according to5

q1 =
�1

�1
�q1

b − q1
l � = −

�1

�1
q1

l . �A3�

Combining Eqs. �A2� and �A3� leads to

�1 − 
11�q1
l = qg�a11 + a1D� + 
1DqD

b . �A4�

�1=1 because phonons are not absorbed on the nanostructure
surface. The phonon energy is considered as fully reflected
on the nano-object surface because the boundaries of the
structure are free. Following Eq. �2�, we consider that q1

l , qD
b ,

and qg are proportional to T1
l , T0 �the surface D is transmit-

ting the phonons from the thermal bath�, and T1, respectively.
Rewriting Eq. �A4� yields

T1
l − T0 =

T1�1 − 
11 − 
1D� + �− 1 + 
1D + 
11�T0

�1 − 
11�
, �A5�

because akj =�kj�1−
kj� and �11+�1D=1. Finally, it turns out
that

T1
l − T0

T1 − T0
=

�1 − 
11 − 
1D�
�1 − 
11�

= 1 − 	�, �A6�

with 	�=
1D / �1−
11�. To obtain the incident flux on surface
D denoted as qD

i , Eq. �A2� is written with k=D,


D1q1
l + � 1

�D
−

�D

�D

DD�qD

= − qg�aD1 + aDD� − 
D1q1
b + �1 − 
DD�qD

b . �A7�

Setting �D=0 and q1
b=0 again raises the following equation:


D1q1
l + qD = − qgaD1 + qD

b . �A8�

The simplification arises because D is a flat surface in such a
way that aDD and 
DD cancel. The definition of the net heat
flux qD=qD

1 −qD
i and the equality qD

b =qD
1 yield

qD
i = qgaD1 + 
D1q1

l = qg + 
D1�q1
l − qg� . �A9�

The configuration factor �D1 was also set to 1 because all the
phonon flux emitted by the surface D inside the nanostruc-
ture reaches the surface 1. Replacing the fluxes by the cor-
responding temperatures leads to

TD
i − T0 = �T1 − T0� + 
D1��T1 − T0��1 − 	�� + T0 − T1�

�A10�

or

TD
i − T0 = �T1 − T0��1 − 
D1	�� . �A11�

The final expression of 	 arises as 	=
D1	�=
D1
2 /1−
11.

The temperature Ta is the average of the temperatures T0

and TD
i ,

Ta

T1 − T0
=

TD
i + T0

2�T1 − T0�
=

1

2
�1 − 	 + 2

T0

T1 − T0
� , �A12�

and finally Ta−T0 /T1−T0=1−	 /2.

APPENDIX B: CALCULATION OF THE � COEFFICIENT

When the nanostructure is a strip of infinite length, of
width D, and of thickness e=D /10 then 
11 equals zero be-
cause the surface of the nanostructure is mostly flat, and 	
reduces to 
1D

2 . The configuration factor �1D is equal to 1 in
such a way that 
1D can be written as �1−L1D /��. Reference
5 directly provides the geometric-mean beam length L1D

=0.175 D, which leads to 	= �1−0.175 /Kn�2.
Following the same procedure, we solve the case of the

horizontal wire of square section of edge D. The configura-
tion factors are deduced from the reciprocity and the sum-
mation condition in the nanostructure: �D1=1, �1D=SD /S1

=1 /3, �11=1−�1D=2 /3. The algebra of the mean beam
lengths allows for writing

�D1L1D = �DaLaD + �DbLbD + �DcLcD, �B1�

where the indexes a, b, c refer to the three facets of the wire,
the surface Sb being parallel to the surface SD. Due to the
symmetry, LaD=LcD and Eq. �B1� reduces to L1D=2�DaLaD

+�DbLbD. Decomposing the mean beam length L11 leads to
S1�11L11=2�2Sa�abLab+Sa�acLac�. We used the fact that Lii

=0 when i=a, b, or c �because Sa, Sb, and Sc are flat sur-
faces�, and the reciprocity imposes that Lij =Lji. We finally
end up with L11=2�abLab+�acLac=L1D. Using Lab=0 and
Lac=� D with �=0.5588, the 	 factor can be written as 	
= �1−� /Kn�2 /9−6�1−� /Kn�.

If the structure is a vertical wire of square section of
edge D and length 10D, then �1D=1 /40 and �11=39 /40.
The mean beam lengths between two opposite rectangles and
between rectangles at right angles provide 	
�1D

2 �1
−� /Kn�2 /�� /Kn, where �=3.467 and ��=1.059.

For the cube of edge D, it is possible to show that L11

=L1D again in such a way that 	= �1−� /Kn�2 /25−20�1
−� /Kn� because �1D=1 /5 and �11=4 /5. The geometric-
mean beam length coefficient is here �=0.6668.

All the configuration factors were found in Ref. 5.

1G. Chen and M. Neagu, Appl. Phys. Lett. 71, 2761 �1997�; K. E. Goodson,
G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, J.
Appl. Phys. 93, 793 �2003�.

2G. Domingues, S. Volz, K. Joulain, and J.-J. Greffet, Phys. Rev. Lett. 94,
085901 �2005�.

3S. Volz and G. Chen, Appl. Phys. Lett. 75, 2056 �1999�; S. Volz, D.
Lemonnier, and J. B. Saulnier, Microscale Thermophys. Eng. 5, 191
�2001�.

4R. Prasher, Nano Lett., 5, 2155 �2005�; V. Bahadur, J. Xu, Y. Liu and T. S.
Fisher, J. Heat Transfer, 127, 664 �2005�.

5R. Siegel and J. Howell, Thermal Radiation Heat Transfer, 4th ed. �Taylor
and Francis, London, 2002�, Chap. 12, p. 517.

6A. Chimmalgi, D. J. Hwang, and C. P. Grigoropoulos, Nano Lett. 5, 1924
�2005�.

7S. Lefèvre, S. Volz, and P.-O. Chapuis, Int. J. Heat Mass. Transfer 49, 251
�2006�.

8L. Shi and A. Majumdar, J. Heat Transfer, 124, 329 �2002�.
9A. Majumdar and C. L. Tien, ASME J. Heat Transfer 113, 516 �1991�.

10M. M. Williamson and A. Majumdar, ASME J. Heat Transfer 114, 802
�1992�.

034306-8 S. Volz and P.-O. Chapuis J. Appl. Phys. 103, 034306 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



11B. Nikolic and P. B. Allen, Phys. Rev. B 60, 3963 �1999�.
12G. Wexler, Proc. Phys. Soc. London 89, 927 �1966�.
13A. Strong, G. Schneider, and M. Yovanonvich, in AIAA and ASME Ther-

mophysics and Heat Transfer Conference, 15–17 July �1974�.
14Y. V. Sharvin, Zh. Eksp. Teor. Fiz. 48, 984 �1965�.

15R. Prasher, Phys. Rev. B 74, 165413 �2006�.
16G. Chen, Phys. Rev. Lett. 85, 2279 �2001�; R. G. Yang, G. Chen, M.

Laroche, and Y. Taur, J. Heat Transfer 127, 298 �2005�.
17M. Modest, Radiative Heat Transfer, 2nd ed. �Academic, New York,

2003�, Chap. 15, p. 483.

034306-9 S. Volz and P.-O. Chapuis J. Appl. Phys. 103, 034306 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


