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Abstract— Heat conduction in semiconductors is mediated by 
thermally-excited phonons. When dimensions smaller than the 
mean free path are involved, nondiffusive heat conduction arises. 
In addition, surface effects related to thermal boundary 
resistances become significant when the dimensions of the 
considered media decrease. These two phenomena significantly 
alter thermal transport in comparison to predictions made with 
standard heat diffusion and result in larger temperature levels at 
the heat source, which can be detrimental for electronics devices. 
We tackle few examples where these effects are observed.  
By using the Boltzmann Transport Equation (BTE) for phonons 
or approximated solutions, we show that effective cross-plane 
thermal conductivity reduction takes place. We then present 
results of heat conduction from a metallic line of nanometer-scale 
width towards a flat bulk. We show that 2D ballistic heat 
conduction takes place and that a ballistic reduction factor 
associated to the phonon rarefaction effect should be included. 
The dissipated heat fluxes are reduced in comparison to the 
Fourier prediction. The consequence is that strong hot spots may 
arise. We then analyze the effect of surface imperfect 
transmission in thermal boundary resistance and introduce a 
method based on acoustics to compute it. We show that 
confinement and imperfect transmission lead to similar reduction 
of the effective thermal conductivity. 
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I.  INTRODUCTION 

Heat conduction is known since the XIXth century and the 
work by Fourier [1]. It states that the local heat flux density 
q
�

is proportional to the temperature gradient through a 
quantity termed thermal conductivity k: 

.q k T= − ∇
�� . (I.1) 

Applying Fourier’s diffusion law requires in principle the 
continuity of the temperature field so that it can be locally 
derived. At perfect interfaces between two media, the most 
usual conditions are continuity of the flux, which arises from 
energy conservation, and continuity of temperature. This 
second condition is not necessarily kept as such when the 
interface is not ideal: voids or third bodies can be present at 

the mechanical contact between two solids. Most of the 
current simulation tools rely on the heat equation derived from 
Fourier’s law: 
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where pcρ is the heat capacity per unit volume and qɺ is 

the heat source/bath per unit volume. It is well known that the 
heat equation suffers from various deficiencies. As an 
example, the flux transferred across a film of thickness L 
writes 

T
q k

L

∆= , (I.3) 

which diverges when L becomes arbitrarily small. Since 
the flux should stay finite, either the temperature difference 
vanishes or there is a physical length where the diffusive 
regime cannot be applied anymore.  

A first typical length is the mean free path Λ, which is the 
average distance that an energy carrier travels between two 
scattering events [2]. In semiconductors, phonons, i.e. 
collective vibrations of atoms, are these carriers. At room 
temperature or higher, phonons can be considered as 
quasiparticles, provided that the size of the medium is larger 
than 5 nm. As a result, the phonon mean free path is of 
paramount importance in modern nanoelectronic devices, 
which routinely involves sub-micrometric sizes. The 14 nm 
node of the ITRS was reached in the last years [3], which 
means that sub-50 nm features are ubiquitous in devices and 
components. 

A second typical length is the one where the right hand 
side of Eq. (I.3) is comparable to the thermal boundary 
conductances (TBC) per unit surface gi (i=1,2) at the 
boundaries of the film. Indeed, the heat flowing across the 
film has also to cross its boundaries, and even in the case of 
perfect contact the heat transmission is not perfect. In a 
macroscopic way the total thermal resistance associated to Eq. 
(I.3) writes 
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  which shows that the TBCs can indeed be neglected for 
large thicknesses, but that it is not possible for small L. 

Other deficiencies of the heat equation could be mentioned 
[2], especially in the transient domain. For instance, when 
more than one type of energy carriers coexist in a medium, 
non-equilibrium between them is possible, leading to more 
than one local temperature. In addition, it has been observed 
since the 1950s that Fourier’s law is instantaneous, which is 
not possible in reality due to constraints associated with the 
velocity of light [4-5].  

In the following, we restrict ourselves to thermal transport 
in the stationary regime. We will successively observe the 
effects of the ballistic regime (L < Λ) of energy transport in 
1D and in 2D, and of phonon transmission coefficients at 
boundaries. 

II. BALLISTIC THERMAL TRANSPORT IN 1D 

In this section, we analyze the effect of confinement within a 
thin layer and its effect on heat dissipation in one-dimensional 
configurations across such layer close to room temperature. 
The average mean free path in silicon is known to be close to 
Λ~300 nm since the pioneering work by the Goodson group 
[6]. This means that films of similar thickness cannot be 
simulated within the diffusive regime with usual Finite 
Element Method-based tools.  
 

A. Computing the local non-equilibrium temperature 

 
The key dimensionless number used to define the transition 
between the diffusive (Fourier) regime and the ballistic regime 
is the Knudsen number which compares the medium size L to 
the mean free path: 

Λ
Kn

L
=  . (II.1) 

In both the diffusive (Kn < 0.05) and the ballistic regimes  
(Kn >> 1), the phonon transfer can be simulated by solving the 
Boltzmann Transport Equation (BTE) under the relaxation 
time approximation [7]:  
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where Λp(ω)/vg,p(ω) is the phonon relaxation time, vg being the 
group velocity (velocity at which the energy is propagating), 
which depends on the frequency and the dispersion branch p 
(polarization). At equilibrium, the population of thermally-
excited phonons is given by the Bose-Einstein distribution 
function n°(ω,T)=1/exp(Ñω /kBT), where ω is the circular 
frequency, Ñ the reduced Planck constant and kB the 
Boltzmann constant. We note ( , , )pn r Tω �  the phonon 

distribution function out of equilibrium. In the stationary 
regime, the first term vanishes and the equation to solve is 
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where s is the curvilinear abscissa. This shows that for large 
mean free paths no gradient of n can be obtained and that for 
small mean free paths the distribution function should stay 
close to equilibrium. The Knudsen number appears in this 
equation if it is made nondimensional (with s = L s*, where s* 
is the nondimensional curvilinear abscissa). If  u

�
 = (θ,ϕ) 

defines the angles of propagation direction of a phonon, the 
local energy per unit volume can be computed as 
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where 2 2 2
, ,( ) / (2 )p p g pg v vϕω ω π=  is the phonon density of 

states with vϕ as the phase velocity. In the following the 
phonon dispersion is considered isotropic and only the phonon 
population n can be anisotropic.  sindu d dθ θ ϕ=�  and I is the 

phonon spectral radiance [8], similar to the photon one used in 
thermal radiation. The sum in Eq. (II.4) is over the three 
polarizations (see Fig. 1: two transverse acoustic modes TA 
and one longitudinal acoustic mode LA - we remind that the 
contribution of the LO+TO optical modes to heat conduction 
is neglected due to their low group velocity vg = dω/dk ). In 
contrast to photons, phonon frequency is limited by a maximal 
value 

maxω .  

 
Fig. 1. Dispersion curves of silicon along the [100] (ΓX) 
direction in a quadratic approximation [2]. k=ω/vϕ is the 
wavector. Note that silicon is often considered as isotropic.  
 
The local temperature ( )T r

� can be computed by determining 

the equilibrium temperature that would provide the same local 
energy:  
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where Io is obtained from no. It is important to understand that 
this local temperature is not a quantity acceptable in usual 
thermodynamics which requires at least the so-called local 
thermodynamic equilibrium (L.T.E.), i.e. that the distribution 
function be close to that of equilibrium no and weakly 
anisotropic [9]. The local temperature is sometimes termed as 
an ‘effective’ or ‘kinetic’ temperature. 
If 

max / BT kω≪ℏ , the velocity of a dispersion branch can be 

considered as constant with vϕ,p  = vg,p: this is the Debye 
approximation. If verified for all dispersion branches, the local 
temperature is computed from  
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where 
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 is the Stefan-Boltzmann constant for 

phonons. The Equation of Phonon Radiative Transfer (EPRT) 
[8] considers a Debye approximation and that 

maxω → ∞ . The 

previously-mentioned condition on temperature is not met 
around room temperature in crystalline solids: / ~ 40Bk T ℏ  

THz, while for silicon Fig. 1 shows that highest contributing 
frequency is 

max ~ 75ω  THz. However, the EPRT allows 

introducing all the key concepts associated to the ballistic 
regime in a qualitative manner by avoiding unnecessary 
complexity due to atomic dispersion and frequency cut-off. In 
the following, we will present results from full BTE solutions 
or from the EPRT. The following results have been obtained 
with the Discrete Ordinate Method (DOM) [10] in the two 
cases. 
 

B. Local temperature distribution 

 
Fig. 2 shows the temperature profile for the ideal case of a 
layer sandwiched between two surfaces with perfect 
transmission (no reflection) respectively at 300.5 K and 299.5 
K. In Fig. 2a, single-mean free path is considered, and it is 
possible to provide a Knudsen number. It can be seen that the 
well-known linear and continuous profile of the diffusive 
regime flattens and leads to temperature discontinuities at the 
boundaries when the medium size decreases (i.e. when Kn 
increases). In reality, the mean free paths of phonons depend 
on their frequency and a distribution of mean free paths should 
be accounted for [11]. For silicon, Fig. 2b shows that 
submicrometric films depart already from the continuous 
linear diffusive profile. In contrast to the ideal single (gray) 
mean free path case, the profiles cannot be assimilated to 
lines. The average mean free path in silicon is estimated to be 
close to 300 nm [6]. 

 
Fig. 2. Temperature profile in a film sandwich between perfect 
boundaries: (a) case of a single mean free path; (b) case of a 
distribution of mean free paths. 

C. Impact on the heat flux 

 

Fig. 3. Heat flux and thermal conductivity computed within 
the EPRT frame as a function of the layer thickness for a 
sinlge mean free path of 300 nm. (a) Heat flux; (b) effective 
cross-plane thermal conductivity.  

(a) 

(b) 



 
Fig. 3 shows that reducing the thickness (i.e. increasing 

Kn) leads to increasing the heat flux. A leveling-off can be 
observed for thicknesses much lower than the mean free path, 
while an inaccurate application of Fourier law (Eq. (I.3)) 
predicts a diverging 1/L behavior. The consequence is that the 
ballistic regime sets a maximum heat flux that can be 
transferred. Eq. (I.3) can be kept as valid but the thermal 
conductivity should then be considered as size-dependent: 

( )k L . In this case a reduction takes place for thin films (see 
Fig. 3b). For a film of 60 nm the single mean free path 
approximation in the EPRT frame predicts an effective 
thermal conductivity reduced by more than 80% in 
comparison to the bulk.  

Here, we have shown that the cross-plane thermal 
conductivity is strongly reduced. We underline that the in-
plane thermal conductivity is also reduced [12]. 

III.  BALLISTIC THERMAL TRANSPORT IN 2D 

 

Fig. 4. Local temperature distributions for two different Kn 
related to the heat source size.  

 

We now turn to the bi-dimensional geometry in Cartesian 
coordinates [13-14]. We consider an electrically-conducting 
wire deposited on top of a substrate. This situation is usual in 
components and devices, and remembers also the geometry 
used in the 3ω method allowing for the determination of 
thermal conductivity of nanomaterials [15]. The wire, heated 
through Joule effect, is considered as a source of fixed 
temperature at the boundary of the computational domain of 
area Lx Lz = 3x3 µm2 in the xz plane (see Fig. 4). Translational 
invariance is assumed along the y direction. The key 
dimension is now the width of the line heat source w. As a 
result, we define the Knudsen number as Kn=Λ/w. In the 
simulations, the wire temperature is set at 400 K, while the 
other boundaries are set at 300 K. The results are obtained 
within the EPRT frame considering again an average mean 
free math of 300 nm. It is again seen that a temperature jump 
takes place close to the source: maximal temperatures in the 

domain reach respectively 380 K and 350 K for Kn = 2 and Kn 
= 4, in contrast to 400 K predicted with Fourier’s law. 
Similarly to the 1D case, this means that heat dissipation is 
less efficient. Note that this effect has been called ‘phonon 
rarefaction’ by analogy with the ‘rarefied gas regime’ known 
at reduced pressure in vacuum chambers.  

The implementation of adiabatic conditions at the 
boundaries in contact with the source would lead to situation 
closer to realistic situations. In this case, the thermal resistance 
associated to heat dissipation between the wire and a flat 
surface (considering no boundaries along x direction) is 
known to be [16] 

2
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if yL is the transverse length of the metallic wire.  

A = 1.048417 is a numerical constant close to 
/2 2

3
0
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π

∫
. In this case, it would be shown that Kn and 

the mean free path Λ would take part in the expression and 
increase the resistance. The effect can be embedded in a 
geometry-dependent thermal boundary resistance, which could 
enable the use of usual FEM simulations with effective 
parameters. Alternatively, a ballistic reduction factor can be 
defined. We note that accounting for the real shape of the wire 
would possibly lead also to nonequilibrium issues [17-18]. 
Thermal boundary resistance at the wire-substrate interface 
should also be considered in this case. 

In both the 1D and the 2D cases, heat dissipation is 
reduced. This often leads to increased local temperature and 
may be detrimental in many devices and components.  

IV.  THERMAL BOUNDARY RESISTANCES 

We now turn to the analysis of the transmission of phonons at 
boundaries between two materials. Phonons can be considered 
as acoustic waves as in continuum elasticity theory if their 
wavelength is not too small, i.e. if the variation of their group 
velocity stays close to the sound velocity – then atomic 
acoustic dispersion can be neglected. It is the case for low-
frequency phonons (with frequencies lower than few THz). 
One can easily understand that the probability for a phonon 
travelling into a first medium to be transmitted toward a 
second medium will depend on the acoustic impedances of the 
two media. The problem is similar to an optical wave being 
partly reflected at an interface, where the quantity of energy 
transmitted depends on the well-known Fresnel coefficients 
[2].  
The key information associated to the thermal boundary 
resistance is the ability for a phonon to be transmitted across 
the interface. The coefficient of transmission in energy from 
medium A to medium B is noted τ (ω,θ), and depends both on 
the frequency and the angle of incidence. The flux transferred 
q [W.m-2] is therefore [2] 
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where (θ,ϕ) are the angles defining the direction of 
propagation of a phonon before impinging the surface between 
media A and B. The sum is performed over the polarizations 
p, i.e. for one longitudinal and two transverse waves. The 
thermal conductance G [W.m-2.K-1] across the boundary is 
given by the derivative of the flux with respect to temperature, 
i.e. 
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with the thermal resistance [K.m2.W-1] being the inverse. 
 

 
Fig. 5. Transmission coefficients across a Si�Ge (a) or  
Ge� Si (b) interface as a function of the angle of incidence in 
the longitudinal case. 
 
While thermal resistance can readily be calculated from 
molecular dynamics simulation at equilibrium or out of 
equilibrium directly [19], this frame allows determining 
precisely which modes are transferred and which ones are 
reflected. In the purely acoustic framework, there is no 

frequency dependence for perfectly flat interfaces. The 
calculation of the thermal conductance can be done 
analytically for the flat interface and is known as the Acoustic 
Mismatch Model (AMM) [20]. However, the phonon 
wavelengths (up to few nanometers) at room temperature are 
of similar order to that of atomic lattice constants or natural 
roughness for electronics materials such as silicon, and the 
reflection at interfaces is generally diffuse and not specular as 
considered in the AMM.  
We have developed a tool based on acoustics (linear elasticity) 
to compute the transmission coefficients [21]. Such tool is in 
principle valid only at low temperature and we aim at 
comparing the predictions around room temperature or higher 
with results accounting for atomic acoustic (phonon) 
dispersion (see Fig. 1). These results can be obtained within 
the lattice dynamics framework, which considers that matter is 
discrete. In our tool, we excite acoustic plane waves and send 
them toward an interface for a set of frequencies and angles. 
We compute the energy reflected at the interface, therefore 
determining the transmission coefficient. The computational 
domain is periodic in the direction perpendicular to the 
interface. Absorbing conditions are set close to the source and 
symmetrically at the opposite side (see Fig. 5) [21].  
 

 
Fig. 6. Transmission coefficients across an array of scatterers 
with circular shape or corrugated circular shape, as a function 
of nondimensional frequency. 
 
The interest of this tool is its ability to allow designing 
arbitrary shapes at the interface, provided some periodicity 
perpendicularly to the interface can be set. It is particularly 
suitable for computing the transmission coefficients of rough 
interfaces or situations involving objects scattering phonons. 
In order to show its powerfulness, we have analyzed in 2D the 
case of a periodic array of circular objects (see Fig. 6) – the 
period of the array is a = 100 nm and the radius of a hole is  
R = a/4 - and the transmission is integrated over all incidence 
angles. Circular holes or corrugated holes have been 
considered and showed that corrugations can reduce the 
transmission of phonons through such periodic arrays. Note 



that the corrugations, built here from 8 small disks at the limits 
of a hole, deviate by up to R/6 from the ideal circular shape. 
The computations from this acoustic method should be 
compared with results of the Diffuse Mismatch Model  
(DMM) [22] currently used to determine the thermal 
resistance across interfaces close to room temperature. We 
underline that DMM also suffers from lacks [23-24]. In 
particular, it cannot tackle the case of close-to-identical 
materials in contact. Real acoustic simulations embedding 
roughness are therefore preferable. 

V. CONCLUDING REMARKS 

We have shown that for a thin film two mechanisms can 
block the heat dissipation: non-perfect transmission at 
interfaces (wave effect) and particle confinement. While the 
two have been treated separately here for pedagogical purpose, 
they should be combined in real cases. Indeed, it is not 
possible to add simply the effects by attributing a thermal 
resistance to each of them. As a result, a full frequency-
dependent treatment involving the BTE should be 
implemented, with the transmission coefficient calculated with 
the method described in Section IV. 

We note that we have not considered the electron-phonon 
interaction in confined media [25] and the related transient 
issues [26]. This can be done by solving simultaneously the 
BTE for phonon and electrons in the time domain [27]. 
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