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Abstract— Heat conduction in semiconductors is mediated by
thermally-excited phonons. When dimensions smaller than the
mean free path are involved, nondiffusive heat conduction arises.
In addition, surface effects related to thermal boundary
resistances become significant when the dimensions of the
considered media decrease. These two phenomena significantly
alter thermal transport in comparison to predictions made with
standard heat diffusion and result in larger temperature levels at
the heat source, which can be detrimental for electronics devices.
Wetackle few examples wher e these effects ar e observed.

By using the Boltzmann Transport Equation (BTE) for phonons
or approximated solutions, we show that effective cross-plane
thermal conductivity reductiontakes place. We then present
results of heat conduction from a metallic line of nanometer-scale
width towards a flat bulk. We show that 2D ballistic heat
conduction takes place and that a ballistic reduction factor
associated to the phonon rarefaction effect should be included.
The dissipated heat fluxes are reduced in comparison to the
Fourier prediction. The consequence is that strong hot spots may
arise. We then analyze the effect of surface imperfect
transmission in thermal boundary resistance and introduce a
method based on acoustics to compute it. We show that
confinement and imperfect transmission lead to similar reduction
of the effective ther mal conductivity.

Keywords—heat conduction; thermal phonon; thermal
boundary resistance; ballistic transport; Boltzmann transport
equation.

. INTRODUCTION

Heat conduction is known since the XIXth centurg &me
work by Fourier [1]. It states that the local hélak density

Jis proportional to the temperature gradient through
guantity termed thermal conductivity

g=-kOT. (1.1)
Applying Fourier’'s diffusion law requires in priqte the
continuity of the temperature field so that it ca@ locally
derived. At perfect interfaces between two medie, most
usual conditions are continuity of the flux, whiatises from
energy conservation, and continuity of temperaturais
second condition is not necessarily kept as suchnwine
interface is not ideal: voids or third bodies cangresent at
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the mechanical contact between two solids. Mostthef
current simulation tools rely on the heat equatlerived from
Fourier’s law:
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(1.2)

where pcpis the heat capacity per unit volume afds

the heat source/bath per unit volume. It is web\kn that the
heat equation suffers from various deficiencies. as
example, the flux transferred across a film of khigssL
writes

q=kAT, (1.3)

which diverges wher. becomes arbitrarily small. Since
the flux should stay finite, either the temperatdiference
vanishes or there is a physical length where thHaugive
regime cannot be applied anymore.

A first typical length is the mean free patlh which is the
average distance that an energy carrier traveladmst two
scattering events [2]. In semiconductors, phonons,
collective vibrations of atoms, are these carrigks.room
temperature or higher,
guasiparticles, provided that the size of the mmdis larger
than 5 nm. As a result, the phonon mean free patbfi
paramount importance in modern nanoelectronic @syic
which routinely involves sub-micrometric sizes. Thé nm
node of the ITRS was reached in the last yearsBjch
means that sub-50 nm features are ubiquitous ifcelevand
components.

A second typical length is the one where the rigahd
side of Eqg. (1.3) is comparable to the thermal htaug
conductances (TBC) per unit surfagg (i=1,2) at the
boundaries of the film. Indeed, the heat flowingoas the
film has also to cross its boundaries, and evethéncase of
perfect contact the heat transmission is not perfet a
macroscopic way the total thermal resistance asttio Eq.
(1.3) writes

phonons can be considered as
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which shows that the TBCs can indeed be negleftied
large thicknesses, but that it is not possiblesfoallL.

(1.4)

Other deficiencies of the heat equation could batimeed
[2], especially in the transient domain. For insenwhen
more than one type of energy carriers coexist imealium,
non-equilibrium between them is possible, leadiagntore
than one local temperature. In addition, it hasnbeleserved
since the 1950s that Fourier’'s law is instantangadsch is
not possible in reality due to constraints assediatith the
velocity of light [4-5].

In the following, we restrict ourselves to therrtrainsport
in the stationary regime. We will successively ohbsethe
effects of the ballistic regime. (< A) of energy transport in
1D and in 2D, and of phonon transmission coeffideat
boundaries.

Il.  BALLISTIC THERMAL TRANSPORT IN1D

In this section, we analyze the effect of confinamsithin a

thin layer and its effect on heat dissipation ie-a@imensional
configurations across such layer close to room &atpre.
The average mean free path in silicon is knownealbse to
/1~300 nm since the pioneering work by the Goodsmumgr
[6]. This means that films of similar thickness wah be
simulated within the diffusive regime with usual nke

Element Method-based tools.

A. Computing the local non-equilibrium temperature

The key dimensionless number used to define thesitian
between the diffusive (Fourier) regime and theistid! regime
is the Knudsen number which compares the mediuaLsto
the mean free path:

anﬁ-

: (I1.1)

In both the diffusive Kn < 0.05) and the ballistic regimes
(Kn>> 1), the phonon transfer can be simulated byisglthe
Boltzmann Transport Equation (BTE) under the refiaxa
time approximation [7]:
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whereAy (Vg (a) is the phonon relaxation time, being the
group velocity (velocity at which the energy is pagating),
which depends on the frequency and the dispersianchp
(polarization). At equilibrium, the population ohdrmally-
excited phonons is given by the Bose-Einstein iistion
function n°(wT)=1/expficw /ksT), where wis the circular
frequency, # the reduced Planck constant ang the
Boltzmann constant. We notenp(w,r,T) the phonon

distribution function out of equilibrium. In the attonary
regime, the first term vanishes and the equaticolee is

(11.3)

wheres is the curvilinear abscissa. This shows that éoge
mean free paths no gradientrotan be obtained and that for
small mean free paths the distribution function udtiostay
close to equilibrium. The Knudsen number appearshis
equation if it is made nondimensional (wihk L s*, wheres*
is the nondimensional curvilinear abscissa). 0 = (6,¢)

defines the angles of propagation direction of angm, the
local energy per unit volume can be computed as

E(F) = e gp(@)
M=> J' Iha)n(a)ur) o du dw

a (I1.4)
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where gp(w)=w2/(2ﬂzv¢,pvg,p) is the phonon density of

states withvs; as the phase velocity. In the following the
phonon dispersion is considered isotropic and tmyphonon
populationn can be anisotropicdt = dd sing dg andl is the
phonon spectral radiance [8], similar to the phaioge used in
thermal radiation. The sum in Eq. (11.4) is ovee tthree
polarizations (see Fig. 1: two transverse acousicdes TA
and one longitudinal acoustic mode LA - we remihdttthe
contribution of the LO+TO optical modes to heat adoction
is neglected due to their low group velocity= dwdk ). In
contrast to photons, phonon frequency is limitecabyaximal
value @y, -
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Fig. 1. Dispersion curves of silicon along the [LQOX)
direction in a quadratic approximation [2=alvs is the
wavector. Note that silicon is often consideredsagopic.

The local temperaturg (r)can be computed by determining

the equilibrium temperature that would provide slagne local
energy:
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(11.5)

wherel® is obtained fronn®. It is important to understand that
this local temperature is not a quantity acceptableisual
thermodynamics which requires at least the so-dalbeal
thermodynamic equilibrium (L.T.E.), i.e. that thestdbution
function be close to that of equilibrium® and weakly
anisotropic [9]. The local temperature is sometitegmed as
an ‘effective’ or ‘kinetic’ temperature.

If T<naw,, ks, the velocity of a dispersion branch can be

considered as constant withy, = vy this is the Debye
approximation. If verified for all dispersion brdras, the local
temperature is computed from

40, T(F)" = ZT j | (w0 ,F)dd de-
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(1.6)
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phonons. The Equation of Phonon Radiative Tran&@RT)

[8] considers a Debye approximation and t@at . «. The

previously-mentioned condition on temperature ig¢ nwet
around room temperature in crystalline solidgT /7~ 40

THz, while for silicon Fig. 1 shows that highesntidbuting
frequency is ¢y ~75 THz. However, the EPRT allows

introducing all the key concepts associated to lhdistic
regime in a qualitative manner by avoiding unneasss
complexity due to atomic dispersion and frequenatyaff. In
the following, we will present results from full ETsolutions
or from the EPRT. The following results have be&tamed
with the Discrete Ordinate Method (DOM) [10] in tivvo
cases.

where g is the Stefan-Boltzmann constant for

phn

B. Local temperature distribution

Fig. 2 shows the temperature profile for the ideade of a
layer sandwiched between
transmission (no reflection) respectively at 30R.&nd 299.5
K. In Fig. 2a, single-mean free path is considemad it is

possible to provide a Knudsen number. It can be Heat the
well-known linear and continuous profile of the fd#ive

regime flattens and leads to temperature discoitigisuat the
boundaries when the medium size decreases (i.en Whe
increases). In reality, the mean free paths of pherdepend
on their frequency and a distribution of mean fraéhs should
be accounted for [11]. For silicon, Fig. 2b showsatt
submicrometric films depart already from the comtins

linear diffusive profile. In contrast to the idesihgle (gray)
mean free path case, the profiles cannot be assédilto
lines. The average mean free path in silicon isneded to be
close to 300 nm [6].
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Fig. 2. Temperature profile in a film sandwich beém perfect
boundaries: (a) case of a single mean free pajhcage of a
distribution of mean free paths.

C. Impact on the heat flux
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Fig. 3. Heat flux and thermal conductivity computedhin
the EPRT frame as a function of the layer thicknfssa

sinlge mean free path of 300 nm. (a) Heat flux; €figctive
cross-plane thermal conductivity.



Fig. 3 shows that reducing the thickness (i.e.dasing
Kn) leads to increasing the heat flux. A leveling-ofn be
observed for thicknesses much lower than the mesndath,
while an inaccurate application of Fourier law (E#3))

domain reach respectively 380 K and 350 KKor= 2 andKn
= 4, in contrast to 400 K predicted with Fourietaw.
Similarly to the 1D case, this means that heatighsi®on is
less efficient. Note that this effect has beenechliphonon
rarefaction’ by analogy with the ‘rarefied gas regi known

predicts a diverging L/behavior. The consequence is that theat reduced pressure in vacuum chambers.

ballistic regime sets a maximum heat flux that doa

transferred. Eq. (1.3) can be kept as valid but thermal

conductivity should then be considered as size-uldget:

k(L) . In this case a reduction takes place for thimdil(see
Fig. 3b). For a film of 60 nm the single mean freath

approximation in the EPRT frame predicts an effecti
thermal conductivity reduced by more than 80%

comparison to the bulk.

Here, we have shown that theross-plane thermal

conductivity is strongly reduced. We underline that the in-

plane thermal conductivity is also reduced [12].

I1l. BALLISTIC THERMAL TRANSPORT IN2D
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Fig. 4. Local temperature distributions for two feient Kn
related to the heat source size.

We now turn to the bi-dimensional geometry in Csiete
coordinates [13-14]. We consider an electricallpahacting
wire deposited on top of a substrate. This situatiousual in
components and devices, and remembers also theeggom
used in the & method allowing for the determination of
thermal conductivity of nanomaterials [15]. The ayiheated
through Joule effect, is considered as a sourcdixafd
temperature at the boundary of the computationataio of
areal, L, = 3x3um? in thexz plane (see Fig. 4). Translational
invariance is assumed along the direction. The key
dimension is now the width of the line heat sounceAs a
result, we define the Knudsen number Kas=A/w. In the
simulations, the wire temperature is set at 400nKile the
other boundaries are set at 300 K. The resultsobtained
within the EPRT frame considering again an averagan
free math of 300 nm. It is again seen that a teatpez jump
takes place close to the source: maximal temperstir the

in

The implementation of adiabatic conditions at the
boundaries in contact with the source would leaditwation
closer to realistic situations. In this case, thermal resistance
associated to heat dissipation between the wire arftht
surface (considering no boundaries alorgdirection)
known to be [16]

_ (IV.1)
R =k

if Ly is the transverse length of the metallic wire.
A = 1.048417 is a numerical constant close to

"¢ tanhu sirf u qu- 'n this case, it would be shown thé&t and
0 U3

the mean free path would take part in the expression and
increase the resistance. The effect can be embeiided
geometry-dependent thermal boundary resistancehwdduld
enable the use of usual FEM simulations with effect
parameters. Alternatively, ballistic reduction factorcan be
defined. We note that accounting for the real shafgbe wire
would possibly lead also to nonequilibrium issué3-18].
Thermal boundary resistance at the wire-substnatierface
should also be considered in this case.

In both the 1D and the 2D cases, heat dissipation i
reduced. This often leads to increased local teatpex and
may be detrimental in many devices and components.

V.

We now turn to the analysis of the transmissioplufnons at
boundaries between two materials. Phonons can m&dared
as acoustic waves as in continuum elasticity thébiheir
wavelength is not too small, i.e. if the variatiohtheir group
velocity stays close to the sound velocity — theamac
acoustic dispersion can be neglected. It is the das low-
frequency phonons (with frequencies lower than fEMz).
One can easily understand that the probabilityafgghonon
travelling into a first medium to be transmittedwtrd a
second medium will depend on the acoustic impedaontéhe
two media. The problem is similar to an optical weeing
partly reflected at an interface, where the querdit energy
transmitted depends on the well-known Fresnel c@effts
[2].

The key information associated to the thermal bamynd
resistance is the ability for a phonon to be tratiech across
the interface. The coefficient of transmission iregy from
medium A to medium B is noted(« 6), and depends both on
the frequency and the angle of incidence. The fitarsferred
q [W.m™] is therefore [2]

THERMAL BOUNDARY RESISTANCES
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frequency dependence for perfectly flat interfac@e
calculation of the thermal conductance can be done
analytically for the flat interface and is knowntas Acoustic
Mismatch Model (AMM) [20]. However, the phonon
wavelengths (up to few nanometers) at room tempeyadire

where @¢) are the angles defining the direction of of similar order to that of atomic lattice cons&ior natural

propagation of a phonon before impinging the swfaetween
media A and B. The sum is performed over the prddions
p, i.e. for one longitudinal and two transverse v&avé&he
thermal conductanc& [W.m?2.K™] across the boundary is
given by the derivative of the flux with respecttémnperature,
ie.

53
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with the thermal resistance [K’ivY] being the inverse.
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Fig. 5. Transmission coefficients across a>Sie (a) or
Ge> Si (b) interface as a function of the angle ofdeace in
the longitudinal case.

While thermal resistance can readily be calculatexin
molecular dynamics simulation at equilibrium or oat
equilibrium directly [19], this frame allows deteiming
precisely which modes are transferred and whichs caee
reflected. In the purely acoustic framework, thdse no

roughness for electronics materials such as silieord the
reflection at interfaces is generally diffuse amd specular as
considered in the AMM.

We have developed a tool based on acoustics (lglaaticity)
to compute the transmission coefficients [21]. Stadl is in
principle valid only at low temperature and we aih
comparing the predictions around room temperatutdgigher
with results accounting for atomic acoustic (phgnon
dispersion (see Fig. 1). These results can be raddaivithin
the lattice dynamics framework, which considerg thatter is
discrete. In our tool, we excite acoustic plane egaand send
them toward an interface for a set of frequencied angles.
We compute the energy reflected at the interfaloerefore
determining the transmission coefficient. The cotapanal
domain is periodic in the direction perpendicular the
interface. Absorbing conditions are set close togburce and
symmetrically at the opposite side (see Fig. 5].[21
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Fig. 6. Transmission coefficients across an arfagcatterers
with circular shape or corrugated circular shagea dunction
of nondimensional frequency.

The interest of this tool is its ability to allowesigning
arbitrary shapes at the interface, provided sontéogieity
perpendicularly to the interface can be set. Ipasticularly
suitable for computing the transmission coefficgeaf rough
interfaces or situations involving objects scattgrphonons.
In order to show its powerfulness, we have analyrezD the
case of a periodic array of circular objects (seg 6) — the
period of the array is = 100 nm and the radius of a hole is
R = a/4 - and the transmission is integrated over alidence
angles. Circular holes or corrugated holes havenbee
considered and showed that corrugations can redbee
transmission of phonons through such periodic atrdjote



that the corrugations, built here from 8 small digk the limits

of a hole, deviate by up #®/6 from the ideal circular shape.

(8]

The computations from this acoustic method shoutl bl

compared with results of the Diffuse Mismatch Model

(DMM) [22] currently used to determine the thermaliq;
resistance across interfaces close to room temperate
underline that DMM also suffers from lacks [23-24h
particular, it cannot tackle the case of closed®ntical

materials in contact. Real acoustic simulations eghling (11
roughness are therefore preferable.
V. CONCLUDING REMARKS (2
We have shown that for a thin film two mechanisras c
block the heat dissipation: non-perfect transmissiat
interfaces (wave effect) and particle confineméfithile the
two have been treated separately here for pedagjqmicpose, [13]
they should be combined in real cases. Indeeds ihat
possible to add simply the effects by attributingharmal
resistance to each of them. As a result, a fulgdency-
dependent treatment involving the BTE should be4l
implemented, with the transmission coefficient atdted with
the method described in Section IV. [15]
We note that we have not considered the electramqm
interaction in confined media [25] and the relateahsient  [16]
issues [26]. This can be done by solving simultasgothe
BTE for phonon and electrons in the time domair.[27 [17]
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