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ABSTRACT

There has been a paradigm shift from the well-known laws of thermal radiation derived over a century ago, valid only when the length scales
involved are much larger than the thermal wavelength (around 10 lm at room temperature), to a general framework known as fluctuational
electrodynamics that allows calculations of radiative heat transfer for arbitrary sizes and length scales. Near-field radiative heat transfer and
thermal emission in systems of sub-wavelength size can exhibit super-Planckian behavior, i.e., flux rates several orders of magnitude larger
than that predicted by the Stefan–Boltzmann (or blackbody) limit. These effects can be combined with novel materials, e.g., low-dimensional
or topological systems, to yield even larger modifications and spectral and/or directional selectivity. We introduce briefly the context and the
main steps that have led to the current boom of ideas and applications. We then discuss the original and impactful works gathered in the
associated Special Topic collection, which provides an overview of the flourishing field of nanoscale thermal radiation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0186406

The ability to control thermal radiation is important for a
broad range of applications, including thermal management, spectros-
copy, optoelectronics, and energy-conversion devices. Many of these
applications can take advantage of nanotechnology, often by nano-
manufacturing certain components that are involved in the technologies
or making them more compact. As a result, there is a strong need for an
accurate description of thermal radiation in nanoscale configurations.
Furthermore, the general approach to investigate these phenomena has
undergone a paradigm shift, from the well-known laws of thermal radia-
tion, valid only when the involved length scales are much larger than the
thermal wavelength (around 10lm at room temperature), to a general
framework known as fluctuational electrodynamics (FE) that allows cal-
culations of radiative heat transfer (RHT) for arbitrary sizes and distan-
ces. In the following, we first describe some of the remarkable steps that
led to the current state of the art in thermal radiation engineering, then
provide key concepts explored by the diverse works reported in the
Special Topic collection entitled “Thermal Radiation at the Nanoscale
and Applications,” which highlights the dramatic surge in both theoreti-
cal and applied investigations of this field.

Planck’s famous law of surface-to-surface radiative exchange
between opaque bodies is a century old1 and is able to deal successfully

with innumerable configurations. However, Planck himself underlined
in his book that the law would only be able to address objects, distan-
ces, and curvature radii larger than the relevant wavelengths at which
radiative transfer occurs. As a consequence, other famous features of
macroscopic thermal radiation, such as the T4 dependence of
Stefan–Boltzmann’s law, are not expected to work at small scales. Fifty
years ago, two landmark papers went further and correctly described
radiative heat transfer in situations outside the aforementioned ray
optics regimes, namely, an object of subwavelength size2 [1970, see
Fig. 1(a)] and two objects separated by a small vacuum gap3 [1971, see
Fig. 1(b)]. To do so, they relied on fluctuational electrodynamics (FE),
a theory combining Maxwell’s equations and statistical principles
developed by Sergei Rytov4,5 and co-workers, an approach sometimes
referred to as stochastic electrodynamics.

Because FE exploits the full generality of Maxwell’s equations in
describing thermal radiation, wave effects such as interference and
photon tunneling are included in the theory. The electromagnetic
waves carrying thermal radiation originate from classical albeit sto-
chastic sources describing thermal agitation of charges in matter. A
key element of this formulation is the fluctuation-dissipation theorem
(FDT), expressed by Callen and Welton6 following the description of
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random fluctuation of charges in conductors, i.e., the electric noise, by
Nyquist7 and Johnson.8 The FDT provides a link between dissipation
(how energy is absorbed in a medium) and thermal agitation, under-
lining the fact that energy is a quadratic quantity described by
two-point correlation functions. Green’s functions relating causes
(thermal sources) and consequences (electromagnetic fields) provide
an additional element, allowing studies of arbitrary structural configu-
rations. In addition to radiative heat transfer, FE is also at the heart of
the nanoscale description of other phenomena, such as the Casimir
force9 and noncontact friction.10

While the theoretical principles underlying radiative heat transfer
(RHT) were established 50 years ago, experiments were not easy to
realize at the time due to the small spatial scales required: at room tem-
perature, the thermal wavelength is close to 10lm, and small-scale
effects become relevant only in the sub-micrometer regime. Early
attempts to measure near-field radiative heat transfer (NFRHT) for
NASA, performed at lower temperatures (recall Wien’s law where the
peak thermal wavelength is kth � 3000=T lm, where T is the

temperature) and, therefore, much longer wavelengths,11 or at Philipps
Research, where the experiment by Hargreaves12 (supervised by
Hendrik Casimir, the colleague of Dirk Polder) predated the landmark
theoretical paper, provided the first hints but could not lead to numer-
ous experimental confirmations. It is only in the last 15 years (see ini-
tial papers by Shen et al.13 and Rousseau et al. in 200814) that a
profusion of sensitive near-field experiments appeared,15 as a conse-
quence of the development of nanotechnology with atomic force
microscopy, nanolithography, and MEMS fabrication processes. The
first clear experiments of thermal emission of sub-wavelength objects
are very recent, less than 5-year old.16,17 In both cases, it was shown
that the radiated flux can exceed that predicted by Planck’s blackbody
theory (applicable only in the ray optics regime mentioned earlier, but
unfortunately applied often out of its validity domain). Such a phe-
nomenon has been termed super-Planckian emission.18

Just prior, a theoretical revival emerged 20 years ago, when it was
realized that surface polaritons, i.e., collective charge oscillations at sur-
faces associated with bound material resonances, could introduce
interesting features. One of them is associated with coherent thermal
radiation: scattering surface polaritons by a periodic structure (a grat-
ing) allows for directional emission at each contributing wavelength.19

This is in contrast to the usual broadband and isotropic nature of far-
field emission. Surface nanostructuring in optics has led to the field of
metasurfaces,20 proving a fruitful avenue for novel thermal-emission
engineering. As an example, spectrally and/or directionally selective
emission have become possible. More strikingly, it was shown21

recently that bi-anisotropic materials can break, under certain condi-
tions, the famous Kirchhoff’s law,22 a pedestal of thermal radiation
studies, which states that spectral-directional emissivity is equal to
spectral-directional absorptivity.23 Figure 2 summarizes graphically
some of the key dates mentioned above associated with the field of
nanoscale thermal radiation.

Parallel to all these fundamental developments, there have been
several forays into thermal applications. When in the near field, surface
polaritons lead to spectra very different from those usually known in
the far field. Close-to-monochromatic spectra can be obtained for
small distances or small emitters.24,25 It was postulated early26,27 that
this could be helpful for thermophotovoltaics (TPV), one among other
compelling applications of NFRHT. TPV in the far field [see Fig. 3
(left)] involves conversion of thermal radiation from a hot emitter into
electricity—photovoltaics operating in the infrared. One hurdle of solar

FIG. 1. Examples of size effect in thermal radiation (a)–(c). The thermal wavelength
kth is schematized in yellow. (a) Thermal emission by an object of sub-wavelength
size D � kth. (b) Near-field thermal radiation, also called thermal-photon tunneling,
where d � kth is the distance between the radiating objects at different tempera-
tures. (c) Three examples of large surfaces emitting thermal radiation downward
with features of size comparable to or smaller than kth : a multilayer with layers of
thicknesses ti , a surface with a round shape of curvature radius q, a metasurface
or a grating with height h, pillar length l, and periodicity p.

FIG. 2. Timeline of advances in the field of thermal radiation at nanoscale.
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photovoltaics is the need to convert a broad radiative spectrum, while
photovoltaic cells work efficiently for radiation of energy confined just
above the bandgap. In contrast, the TPV efficiency is better controlled
as the incoming radiation can be confined spectrally. Despite it being a
very mature field (Kolm and Aigrain are credited with the first steps in
the 1950s–1960s), TPV28 design is currently experiencing significant
interest owing to advances in nanofabrication,29,30 development of
back-reflectors, allowing for high efficiency by recycling nonconverted
photons,31–33 and the first experimental demonstrations of near-field
TPV conversion in the last 5 years.34–37 While near-field TPV experi-
ments have thus far failed to exploit surface-polariton effects, several
ongoing efforts show promise. The energy crisis highlights indeed the
need for recovering waste heat at all temperature scales.

Another key application benefitting from theoretical progress in
tailoring far-field thermal radiative properties is radiative cooling38–40

[see Fig. 3 (right)]. Radiative cooling consists in emitting more thermal
radiation than absorbing it, and therefore usually requires a strong
emission in the atmospheric transmission window in the mid-infrared
band. In some sense, it is the opposite of the greenhouse effect. While
this is quite an old topic, the possibility of nanostructuring thermal
emitters has broadened the panel of concepts that can be applied for
enhancing the effect in day-time environments.41 It is especially timely
due to the need for passive cooling of buildings and humans in hot
environments.

Finally, all these advances would not have been possible without
improvements in metrology, spectroscopy, and nanofabrication. For
spectral analysis, this includes progress in near-field spectroscopic
techniques based on atomic force microscopy42–46 combined with the
more common Fourier-transform infrared (FTIR) spectrometer, and
the possibility of infrared ellipsometry. At the integrated level (power),
the development of tiny thermocouples or resistive thermometers has
allowed for measurement of sensitive heat flux densities.

At this stage, we would like to emphasize that there are many
insightful references dealing with thermal radiation at the nanoscale.
We wish to first highlight the book by Zhang,47 which provides a
detailed introduction. Among good review papers on particular sub-
topics, we can mention the following. Small-object emission has been
discussed by Cuevas et al.48 Near-field radiative heat transfer was dis-
cussed, e.g., in Refs. 49–51 and more recently by Papadakis et al.,52

with a focus on resonances in dielectrics. A report on current experi-
ments can be found in Ref. 15, with Song et al. providing a detailed
review on near-field thermophotovoltaic energy conversion.53

Thermal emission of surfaces and metasurfaces was reported in Refs.
54 and 55. The possibility of designing thermal logics and functions
was underlined by Biehs and Ben-Abdallah.56 Many-body systems, as
electromagnetism is nonadditive, are now addressed in the near field.57

The combination of radiative heat transfer and junctions in energy-
conversion devices was detailed by Tervo et al.58 Many other referen-
ces could be added.

We now turn to an analysis of the topics addressed in the Special
Topic collection, which provides a nice overview of the current lines of
investigations in the field. Figure 4 summarizes the key contributions,
splitting between configurations, methods, and applicative fields. One
can observe a clear trend toward increasingly complex configurations,
which now either couple thermal radiation studies with electron-hole
transport in materials or address advanced topologies such as metasur-
faces, nanoparticle chains, or higher-dimensional objects where orien-
tation plays a key role. Related to computational methods, we observe
progressively that one-dimensional FE is replaced by numerical calcu-
lations and even large-scale brute-force optimization. On the experi-
mental side, nanofabrication is spread among all studies, where
spectroscopy is required when spectral selectivity is key to the goal and
flux measurements can be realized by photoacoustic or photothermal
techniques. Finally, we can divide the applications studied into three
categories: (i) purely thermal, such as those involving thermal manage-
ment (including switching/rectification) or radiative cooling, (ii) those
where electrical control or output is desired in a device (bolometers,
MOS transistors, PIN diodes, energy-harvesting, etc.), and (iii) those
where coupling between thermal radiation and other fluctuating phe-
nomena (such as near-field friction) is considered. We note that the
articles of the collection are published under many categories of
APL—metasurfaces/materials,59–66 photonics/optoelectronics,67–72

properties,73–77 energy,78–80 device physics,81–83 imaging,84,85 applied
physics,86 surfaces/interfaces,87 which highlights the interdisciplinarity
and the various fields addressed by nanoscale thermal radiation.

Finally, this Special Topic collection reveals the diversity of speciali-
zation area and scientific origin of its contributors. In contrast to early
days of the field, more than half of the submissions are coming from

FIG. 3. Spectral selectivity required for two
key applications: (a) thermophotovoltaics—
here, with a GaSb cell at room temperature
and an emitter at 1800 K and (b) nighttime
radiative cooling. Blackbodies at different
temperatures are represented in red and
blue. In TPV (a), high efficiency can be
achieved if the cell emissivity is unity close
to the bandgap since reflected photons are
not lost. Reducing the spectral bandwidth,
however, decreases the output power den-
sity. Radiative cooling (b) takes place if the
body radiates toward universe (low temper-
ature) while reflecting other radiative fluxes.
For day-time radiative cooling, solar radia-
tion (not represented here) should especially
be reflected.
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Asia, including roughly one third from China. America (USA, Canada,
Mexico) is responsible for one-fourth of the submissions, while the rest
are coming from Europe (France, Germany, Finland, Spain, etc.). While
this distribution of the submissions provides probably only a qualitative
idea of the forces at the global scale, it is in line with the notable rapid
rise of China in optics and condensed matter-related fields and the cur-
rent strength of other Asian countries (Japan, South Korea). It will be
interesting to analyze where applications develop.

To conclude, we underline that the above-mentioned sub-topics
highlight very well the dynamism of the community tackling thermal
radiation at the crossroad of heat transfer and nanophotonics, as well
as the variety of applications that can be addressed. This resonates par-
ticularly in this time where the need for rational and optimal use of
energy and the quest for efficient harvesting are extremely important.
One difficulty we have not discussed yet is the cost and upscaling of
the envisioned structures to the level of technological devices.
Nanostructuring is not always easy for large-scale elements, and strate-
gies based on bottom–up system design or chemical synthesis would
certainly be preferred. Radiative-cooling textiles and paintings have
already entered this stage. For thermophotovoltaics, startups have
already begun to address the question of economic viability. Other
application-driven systems have hardly tackled such issues yet. At the
level of fundamental science, there remain many questions to be
addressed. Many pillars of the macroscopic thermal-radiation theory
have been progressively revisited over the past decades: the blackbody
limit, Kirchhoff’s law, and even nonlinear fluctuation statistics. There
certainly remain others soon to undergo their “revolution.”
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FIG. 4. Schematic showing typical configurations addressed, the methods applied, and the applications involved.
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